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Geometrization of effective actions

 Can one provide a more conceptual underpinning for the  AdS/CFT 
correspondence a la Wilson? 

 Provide an understanding for origin of local physics in the bulk. 
 Allow identification of the effective degrees of freedom and their 

interactions for intrinsically strongly coupled systems. 

 Necessary to understand how to generalize holographic ideas.
 Crucial to gain insight into how quantum gravity works.
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The Scale Radius duality

 One entry in the AdS/CFT dictionary:
  Energy scale of the field theory maps to the radial coordinate of AdS.
  → leads to the UV/IR duality
  Boundary of AdS: UV of field theory
  Interior of AdS: IR region of field theory

 Naively: Integrating out energy shells in the boundary field theory should 
therefore map to integrating out a part of the bulk geometry. 
 This is at the heart of the Holographic Renormalization Group.

Susskind, Witten 

de Boer, Verlinde, Verlinde

 We are going to attempt to do something similar and derive a flow 
equation, albeit with some differences.



A conceptual picture

Susskind, Witten 
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A few caveats 

 Any given process in the field theory involves excitation at all scales in the 
bulk:
  clear for example in the fluid/gravity correspondence, where one describes 

the low energy effective theory in terms of an asymptotically AdS 
spacetime.
 ∃ some limitations to the UV/IR duality: relativistic beaming Hubeny

 The map between the cut-off scale in field theory and the bulk radial 
position is not terribly transparent
  this is key: we need to unravel this map to understand bulk locality.
 e.g., make precise the statement that a cut-off bulk AdS is dual to CFT 

coupled to induced gravity
 multi-trace operators play an important role



Geometric RG: the proposal

 Consider an effective field theory defined by a path integral:

3

as multiple-trace deformations of the CFT1 arising from

integrating out UV degrees of freedom. In particular, if

there are gapless modes in the part of the geometry that

has been integrated-out (i.e., in the region outside the

AdS2 throat), as in the case of a holographic Fermi sur-

face [27–30], one should include such modes in the low

energy theory (i.e. in SB), resulting a picture of such

modes
2
coupling to a strongly interacting CFT1. This

gives a derivation of the semi-holographic picture [31].

This discussion extends to other geometries with a non-

trivial IR region, for example, the ground states for holo-

graphic superconductors in AdS4 where the IR region can

be a Lifshitz geometry or another AdS4 [32–34].

The outline of the paper is as follows: in Sec. II we lay

down the general formulation of holographic Wilsonian

RG flow using a scalar field and discuss some simple ex-

amples. In Sec. III we consider the specific example of

an extremal black hole, which we use to illustrate the

possibility of appearance of gapless modes in the UV re-

gion and derive the semi-holographic picture. Sec. IV is

devoted to vector fields, where we additionally need to

account for issues associated with gauge invariance. We

end in Sec. V with a discussion and open questions. In

Appendix A we give an explicit discussion how to relate

quadratic terms in the effective action SB to double-trace

deformations in the corresponding CFT.

Note added: while this paper is being finalized, we re-

ceived [18], which overlaps with our discussion in Sec. II

and Sec. IV.

II. A FORMULATION OF THE HOLOGRAPHIC
WILSONIAN FLOW

Consider a field theory defined by a path integral below

some UV cut-off Λ

Z =

�

Λ
DΦ exp [i Ieff [Φ,Λ]] (2.1)

where Φ denotes collectively all the fields involved. O

are a collection of local gauge-invariant operators. The

effective action Ieff [Φ,Λ] at the scale Λ can be written

as

Ieff [Φ,Λ] = I0[Φ] + IUV [Φ,Λ] (2.2)

where I0[Φ] is the original (microscopic) action and IUV

arises from integrating out degrees of freedom above the

cut-off scale Λ. In order for Z to be independent of

the cut-off Λ, IUV [Λ,Φ] should satisfy a renormalization

group flow equation. When IUV is expanded in terms of

a complete set of local (gauge invariant) operators, this

flow equation then gives the β-functions for the complete

set of couplings.

2 In studies of holographic Fermi surfaces referred above, the
modes in question are the free fermions around the Fermi surface.

Here we are interested in a boundary theory with a

gravity dual, say N = 4 super-Yang-Mills theory with

a gauge group SU(N), where IUV [Φ,Λ] generically con-

tains single and multiple-trace gauge invariant operators

(see e.g., [35–37]). In the N → ∞ limit one expects the

flow equation for IUV should dramatically simplify given

factorizations of correlation functions in such a limit. In

this section we propose a counter-part for IUV in the

large N limit in the holographic gravity dual. We use

a bulk scalar field φ which is dual to a scalar boundary

operator O for illustration. Generalizations to multiple

fields are self-evident and generalizations to vector fields

will be discussed in Sec. IV.

A. Holographic flow equations

We work with a static d+1 dimensional bulk geometry

which is rotationally and translationally invariant along

boundary directions, whose metric can be written in a

form

ds2 = gMNdxMdxN ≡ −gttdt
2
+ giid�x

2
+ gzzdz

2
(2.3)

with gMN depending on z only and xM
= (z, xµ

) =

(z, t, xi). While our general discussion should be applica-

ble to various asymptotics of the geometry, for definite-

ness we will concentrate on asymptotically AdS space-

times, which is attained in the limit z → 0.

Now consider a scalar field φ with an action

S =

�

z>�
dd+1x

√
−gL(φ, ∂Mφ) + SB [φ, �] (2.4)

where L is the bulk Lagrangian and SB is a boundary

action defined at the surface z = �. SB [φ, �] defines the

boundary conditions for the bulk field φ at z = �. In fact

one can view it as specifying a “boundary state” for the

bulk theory in the region z > �. It can be interpreted as

coming from integrating out degrees of freedom for φ for

z < �.
In all known examples of metric (2.3) with a bound-

ary theory dual, gtt is a monotonically decreasing func-

tion of z, which implies that intervals of boundary time

∆t are increasingly red-shifted compared with the local

proper time ∆τ ≈ √
gtt ∆t as z is increased (i.e., going

deeper into the interior). Thus lower energy processes in

the boundary theory are more and more associated with

bulk physics in the deeper interior. This is the standard

IR/UV connection [8] and gives a natural interpretation

of the z direction as the renormalization group scale of

the boundary theory.
3

3 While it is clear that z should be inversely related to the bound-
ary cut-off scale Λ, for a generic metric their relation could be
complicated. For pure AdS (or more generally near the AdS
boundary), one has gtt ∝ z−2 and z ∝ 1

Λ .
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possibility of appearance of gapless modes in the UV re-
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3 While it is clear that z should be inversely related to the bound-
ary cut-off scale Λ, for a generic metric their relation could be
complicated. For pure AdS (or more generally near the AdS
boundary), one has gtt ∝ z−2 and z ∝ 1

Λ .

microscopic action result of 
integrating out

 The action IUV obeys an renormalization group flow equation.
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3 While it is clear that z should be inversely related to the bound-
ary cut-off scale Λ, for a generic metric their relation could be
complicated. For pure AdS (or more generally near the AdS
boundary), one has gtt ∝ z−2 and z ∝ 1

Λ .

 In the dual gravity theory we consider a bulk action:

specifies boundary state & 
is bulk analog of IUV



The proposal

 The bulk boundary term SB is identified with IUV

  directly when we think of alternate quantization of boundary CFT which 
is allowed in a small range of conformal dimensions of dual operator.
  up to a Legendre transformation when we work with the standard 

quantization. 

 Care should be exercised in interpreting SB:
 all regions of the bulk contribute to a given physical process.
  non-local terms induced in SB due to gapless modes in the geometry.

 We’ll derive a flow equation for SB[ε]
 the flow is driven by the ‘bulk Hamiltonian’
 equation is the WKB limit of the equation proposed in Heemskerk, Polchinski
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Example 1: Scalars

 Let us consider a bulk scalar field described by an action 

 The cut-off surface z = ε being  arbitrary, the on-shell action should be 
unchanged as we move the surface:
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3 While it is clear that z should be inversely related to the bound-
ary cut-off scale Λ, for a generic metric their relation could be
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4

We propose that the boundary term SB [φ, �] be in-

terpreted as dual to the boundary theory effective ac-

tion IUV in equation (2.2). Their relation is particularly

simple in the so-called ‘alternative quantization’ [38],

where the boundary value of the scalar field φ is iden-

tified (in the absence of SB) as the expectation value of

a dual operator operator O [39]. Thus SB [φ, �] should
directly translate into the boundary theory as IUV (up

to some renormalization). In particular, if we expand

SB in power series of φ, then the linear term will corre-

spond to the dual operator O, φ2
terms will correspond

to double-trace operator O2
, and φn

to multiple-trace

operators On
, etc.. In contrast for the standard quanti-

zation, where the boundary value of φ is interpreted as

the source, IUV [O] should be identified with the Legendre

transform of SB (again up to some renormalization) [39].

See equations (A55)–(A56) in Appendix A for explicit

expressions, where we also illustrate this explicitly using

a simple example of double- trace deformations. Note

that away from the fixed points of standard and alterna-

tive quantization, there is no distinction between them;

the above two descriptions are equivalent (again see Ap-

pendix A), although depending on specific situations, one

may be more convenient than the other.

There is an important caveat in the above identifica-

tion of SB with IUV , as one cannot really make a precise

identification of integrating out the bulk degrees of free-

dom for z < � with integrating out boundary degrees of

freedom above some cut-off scale Λ. After all, for any

boundary physical process (no matter what energy), all

regions in the bulk contribute. In particular, IUV , coming

from integrating out high energy degrees of freedom, has

a well-defined expansion in terms of local operators. But

this is not necessarily the case for SB . Various examples

are known that gapless (or close to gapless) modes exist

in the UV region, including modes near a holographic

Fermi surface [27–30], “Goldstone modes” in a symme-

try breaking phase (see e.g., [20, 40]), order parameters

close to a phase transition [41], the integrating out of

which may induce non-local terms SB and its Legendre

transform. In order to have a proper description of IR

dynamics, one should isolate these gapless modes from

SB and treat them separately. We will discuss explicit

examples of this in detail in Sec. III and Sec. IV. In the

absence of such gapless modes (or after subtracting them

from SB), we expect it should be possible to identify SB

with IUV in some specific cut-off scheme of the bound-

ary theory, although the precise specification of such a

scheme and a precise relation between Λ and � will most

likely be difficult to obtain in general.
4

We will now derive a flow equation for SB by requir-

ing that physical observables are independent of � as it

4 Given that there are also high energy modes in the region z > �
which are unintegrated, the corresponding field theory descrip-
tion should involve some kind of soft cut-off.

is varied. To be specific we restrict our discussion to the

classical gravity limit which corresponds to the large N
(planar) limit of the boundary field theory. For definite-

ness we take the Lagrangian in (2.4) to be

L = −1

2
(∂φ)2 − V (φ) . (2.5)

Varying the action we find that the equation of motion

1√
−g

∂M
�√

−ggMN∂Nφ
�
− ∂V

∂φ
= 0 (2.6)

with boundary condition (evaluated at z = �)

Π =
δSB

δφ
, Π ≡ −

√
−g gzz ∂zφ (2.7)

where Π is the canonical momentum along the radial di-

rection. In the the large N limit of the field theory we are

interested in the value of the on-shell action Scl evaluated

on a solution to (2.6)–(2.7).

Since the choice of our cut-off surface z = � is arbi-

trary, the physical requirement of demanding that the

on-shell action Scl evaluated on a solution (and the solu-

tion itself) does not change, imposes a flow equation for

the boundary action SB , i.e.,

0 = −
�

z=�
ddx

√
−gL+∂�SB [φ, �]+

�

z=�
ddx

δSB

δφ(x)
∂zφ(x).

(2.8)

Using (2.7) the above equation can be written as

∂�SB [φ, �] = −
�

z=�
ddx

�
Π∂zφ−

√
−gL

�
= −
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where H is the Hamiltonian density for evolution in the

z direction. The above equation is intuitively clear; the

flow is generated by the Hamiltonian. Writing out H ex-

plicitly and using (2.7) we can also write the flow equa-

tion as
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ddx
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δSB
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gµν∂µφ∂νφ+ V (φ)
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(2.10)

where

γ ≡ det gµν = ggzz . (2.11)

Note that we should treat (2.10) as a functional equa-

tion and in particular should not impose the equation of

motion (2.6) when evaluating it. When SB is expanded

in power series of φ, the equation specifies how the coef-

ficients of the expansion flow with �. It is important to

emphasize that equation (2.10) is a flow equation for the

boundary action SB rather than the full classical action

Scl as discussed in previous literature, e.g., [16, 17].

 This can be rewritten in terms of a Hamiltonian flow
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Some salient points

 The flow equation for SB is a functional equation and provides a simple 
way to encode the evolution of the couplings. 
 Important that one not impose the bulk equations of motion in evaluating 

this flow equation.

 Thus SB[ε] only encodes information about the part of the geometry that 
has been integrated out. 
 It has no information about the interior of the geometry.
 This is the main difference from the viewpoint of the Holographic 

Renormalization group. de Boer, Verlinde, Verlinde

 We will also see momentarily that SB[ε] contains multi-trace operators in 
addition to single-trace even in the planar limit. 
 Makes this quantity conceptually different from the counter-term actions 

written down for holographic renormalization. Skenderis, Papadimitriou,....



Flow equations for the scalar

 To see some more important features consider a free scalar in the bulk. 

SB [�,φ] = Λ(�) +

�
ddk

(2π)d
√
−γ J(k, �)φ(−k)− 1

2

�
ddk

(2π)d
√
−γ f(k, �)φ(k)φ(−k)

5

B. Extracting low energy behavior: where to put

the cut-off surface

The holographic Wilsonian RG approach outlined here
can be used to simplify the task of extracting low energy
behavior of the dual theory. Recall that in the standard
formulation of AdS/CFT duality, the generating func-
tional of correlation functions in the boundary theory is
given by [6, 7]

eI[J] ≡
�
e
�
JO

�
= lim

�→0
eS0[φc,z≥�]+Sct[φc,z=�]. (2.12)

Here S0 is the bulk action given in (2.5) and Sct is a
counter-term action (required to ensure a well defined
variational principle). The field φc is a classical solution
satisfying appropriate boundary conditions. These take
the form of a regularity (or in-falling) condition in the
interior of the spacetime and an asymptotic boundary
condition specified by the source J (which generically
is either Dirichlet or Neumann). From a field theory
perspective one can imagine the above as prescribing data
at the fixed point.

Given this set-up one can solve the flow equation (2.10)
to determine SB at some scale �. One integrates the field
in the bulk starting with the initial data specified at � = 0
for the field φc as in (2.12). This process ensures that the
generating functional is given by

eI[J] = eS0[φc,z≥�]+SB [φc,z=�] (2.13)

for any �. The key difference of course is that now φc

is found by satisfying the boundary condition at z =
� specified by SB (clearly the flow equation of SB also
ensures that φc obtained this way is the same as that
in (2.12)).

If one is interested in obtaining full correlation func-
tions for arbitrary momentum and frequency, equa-
tion (2.13) by itself does not offer any simplifications
compared to (2.12) as solving for SB [�] is equivalent to
solving the classical equation of motion in the integrated
out region. This is not much of a surprise, the same
statement would be true in field theory; integrating out
momentum shells is not a useful strategy should one be
interested in extracting physics at arbitrary scales.

However, equation (2.13) does offer much simplifica-
tion in extracting low frequency ω (and/or small momen-
tum k) behavior of correlation functions. For such pur-
pose we can expand SB analytically in small ω and/or
k analogous to what one would do with the Wilsonian
effective action in field theory. The leading order expres-
sion in such an expansion is often not difficult to obtain,
as we will see in various examples in the following.

More interestingly, the expansion in ω (and/or k) also
determines where we should put the cut-off surface z = �;
it should be put at the boundary of some IR region where
analytic expansion in ω or k breaks down. Such a break-
down signals the presence of new light degrees of freedom
that must be retained in the low energy dynamics and

not be integrated out. For example, in the geometry of
a black hole with a non-degenerate horizon, we can put
the cut-off surface just outside the horizon, while for an
extremal black hole, it should be put at the boundary of
the near horizon AdS2 region, as the analytic expansion
in ω breaks down in the AdS2 region. Effectively one iso-
lating a region of the geometry which has dominant con-
tribution to low energy physics of the field theory; as a
consequence we are able to formulate a refined version of
the membrane paradigm and derive the semi-holographic
models of low energy effective field theories.

C. Holographic Wilsonian flow for a free scalar

We now illustrate the flow equation (2.10) more explic-
itly by considering a free bulk theory with V (φ) = 1

2m
2φ2

and expanding SB in momentum space as:

SB [�,φ] = Λ(�) +

�
ddk

(2π)d
√
−γ J(k, �)φ(−k)

−1

2

�
ddk

(2π)d
√
−γ f(k, �)φ(k)φ(−k)(2.14)

where as mentioned earlier and also elaborated more in
Appendix A, f(k) is related to couplings for double-trace
operators made from O. Here and below we use the fol-
lowing notation:

kµ = (−ω, ki), ddk = dω dd−1ki,

k2 ≡
�

i

k2i , kµkµ = −gttω2 + giik2 . (2.15)

Plugging (2.14) to (2.10) we then find that

D�Λ =
1

2

�
ddk

(2π)d
J(k, �)J(−k, �), (2.16)

D�

�√
−γ J(k, �)

�
= −J(k, �) f(k, �), (2.17)

D�

�√
−γ f(�, k)

�
= −f2(k, �) + kµkµ +m2 (2.18)

where

D� =
1√
−γ

√
gzz ∂� =

1√
−g

∂� . (2.19)

By specifying the initial condition Λ0 ≡ Λ(�0), J0 ≡
J(�0) and f0 ≡ f(�0) on some initial surface z = �0, equa-
tions (2.16)–(2.18) can then be used to determine these
quantities at some other surface at z = � > �0. Since
we are working with a classical theory, we expect that
equations (2.17)–(2.18) should be related to the classical
equations of motion (2.6).5 Indeed writing equation (2.6)

5 Once J is known, (2.16) can be integrated directly.
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 The flow equations for the ‘couplings’ in SB are:

evolution of double trace
couplings 

evolution of the source



A note on conventions

 Bulk metric: 

3

as multiple-trace deformations of the CFT1 arising from

integrating out UV degrees of freedom. In particular, if

there are gapless modes in the part of the geometry that

has been integrated-out (i.e., in the region outside the

AdS2 throat), as in the case of a holographic Fermi sur-

face [27–30], one should include such modes in the low

energy theory (i.e. in SB), resulting a picture of such

modes
2
coupling to a strongly interacting CFT1. This

gives a derivation of the semi-holographic picture [31].

This discussion extends to other geometries with a non-

trivial IR region, for example, the ground states for holo-

graphic superconductors in AdS4 where the IR region can

be a Lifshitz geometry or another AdS4 [32–34].

The outline of the paper is as follows: in Sec. II we lay

down the general formulation of holographic Wilsonian

RG flow using a scalar field and discuss some simple ex-

amples. In Sec. III we consider the specific example of

an extremal black hole, which we use to illustrate the

possibility of appearance of gapless modes in the UV re-

gion and derive the semi-holographic picture. Sec. IV is

devoted to vector fields, where we additionally need to

account for issues associated with gauge invariance. We

end in Sec. V with a discussion and open questions. In

Appendix A we give an explicit discussion how to relate

quadratic terms in the effective action SB to double-trace

deformations in the corresponding CFT.

Note added: while this paper is being finalized, we re-

ceived [18], which overlaps with our discussion in Sec. II

and Sec. IV.

II. A FORMULATION OF THE HOLOGRAPHIC
WILSONIAN FLOW

Consider a field theory defined by a path integral below

some UV cut-off Λ

Z =

�

Λ
DΦ exp [i Ieff [Φ,Λ]] (2.1)

where Φ denotes collectively all the fields involved. O

are a collection of local gauge-invariant operators. The

effective action Ieff [Φ,Λ] at the scale Λ can be written

as

Ieff [Φ,Λ] = I0[Φ] + IUV [Φ,Λ] (2.2)

where I0[Φ] is the original (microscopic) action and IUV

arises from integrating out degrees of freedom above the

cut-off scale Λ. In order for Z to be independent of

the cut-off Λ, IUV [Λ,Φ] should satisfy a renormalization

group flow equation. When IUV is expanded in terms of

a complete set of local (gauge invariant) operators, this

flow equation then gives the β-functions for the complete

set of couplings.

2 In studies of holographic Fermi surfaces referred above, the
modes in question are the free fermions around the Fermi surface.

Here we are interested in a boundary theory with a

gravity dual, say N = 4 super-Yang-Mills theory with

a gauge group SU(N), where IUV [Φ,Λ] generically con-

tains single and multiple-trace gauge invariant operators

(see e.g., [35–37]). In the N → ∞ limit one expects the

flow equation for IUV should dramatically simplify given

factorizations of correlation functions in such a limit. In

this section we propose a counter-part for IUV in the

large N limit in the holographic gravity dual. We use

a bulk scalar field φ which is dual to a scalar boundary

operator O for illustration. Generalizations to multiple

fields are self-evident and generalizations to vector fields

will be discussed in Sec. IV.

A. Holographic flow equations

We work with a static d+1 dimensional bulk geometry

which is rotationally and translationally invariant along

boundary directions, whose metric can be written in a

form

ds2 = gMNdxMdxN ≡ −gttdt
2
+ giid�x

2
+ gzzdz

2
(2.3)

with gMN depending on z only and xM
= (z, xµ

) =

(z, t, xi). While our general discussion should be applica-

ble to various asymptotics of the geometry, for definite-

ness we will concentrate on asymptotically AdS space-

times, which is attained in the limit z → 0.

Now consider a scalar field φ with an action

S =

�

z>�
dd+1x

√
−gL(φ, ∂Mφ) + SB [φ, �] (2.4)

where L is the bulk Lagrangian and SB is a boundary

action defined at the surface z = �. SB [φ, �] defines the

boundary conditions for the bulk field φ at z = �. In fact
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ary theory dual, gtt is a monotonically decreasing func-
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IR/UV connection [8] and gives a natural interpretation

of the z direction as the renormalization group scale of

the boundary theory.
3

3 While it is clear that z should be inversely related to the bound-
ary cut-off scale Λ, for a generic metric their relation could be
complicated. For pure AdS (or more generally near the AdS
boundary), one has gtt ∝ z−2 and z ∝ 1

Λ .

 Momenta conventions:
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B. Extracting low energy behavior: where to put

the cut-off surface

The holographic Wilsonian RG approach outlined here
can be used to simplify the task of extracting low energy
behavior of the dual theory. Recall that in the standard
formulation of AdS/CFT duality, the generating func-
tional of correlation functions in the boundary theory is
given by [6, 7]

eI[J] ≡
�
e
�
JO

�
= lim

�→0
eS0[φc,z≥�]+Sct[φc,z=�]. (2.12)

Here S0 is the bulk action given in (2.5) and Sct is a
counter-term action (required to ensure a well defined
variational principle). The field φc is a classical solution
satisfying appropriate boundary conditions. These take
the form of a regularity (or in-falling) condition in the
interior of the spacetime and an asymptotic boundary
condition specified by the source J (which generically
is either Dirichlet or Neumann). From a field theory
perspective one can imagine the above as prescribing data
at the fixed point.

Given this set-up one can solve the flow equation (2.10)
to determine SB at some scale �. One integrates the field
in the bulk starting with the initial data specified at � = 0
for the field φc as in (2.12). This process ensures that the
generating functional is given by

eI[J] = eS0[φc,z≥�]+SB [φc,z=�] (2.13)

for any �. The key difference of course is that now φc

is found by satisfying the boundary condition at z =
� specified by SB (clearly the flow equation of SB also
ensures that φc obtained this way is the same as that
in (2.12)).

If one is interested in obtaining full correlation func-
tions for arbitrary momentum and frequency, equa-
tion (2.13) by itself does not offer any simplifications
compared to (2.12) as solving for SB [�] is equivalent to
solving the classical equation of motion in the integrated
out region. This is not much of a surprise, the same
statement would be true in field theory; integrating out
momentum shells is not a useful strategy should one be
interested in extracting physics at arbitrary scales.

However, equation (2.13) does offer much simplifica-
tion in extracting low frequency ω (and/or small momen-
tum k) behavior of correlation functions. For such pur-
pose we can expand SB analytically in small ω and/or
k analogous to what one would do with the Wilsonian
effective action in field theory. The leading order expres-
sion in such an expansion is often not difficult to obtain,
as we will see in various examples in the following.

More interestingly, the expansion in ω (and/or k) also
determines where we should put the cut-off surface z = �;
it should be put at the boundary of some IR region where
analytic expansion in ω or k breaks down. Such a break-
down signals the presence of new light degrees of freedom
that must be retained in the low energy dynamics and

not be integrated out. For example, in the geometry of
a black hole with a non-degenerate horizon, we can put
the cut-off surface just outside the horizon, while for an
extremal black hole, it should be put at the boundary of
the near horizon AdS2 region, as the analytic expansion
in ω breaks down in the AdS2 region. Effectively one iso-
lating a region of the geometry which has dominant con-
tribution to low energy physics of the field theory; as a
consequence we are able to formulate a refined version of
the membrane paradigm and derive the semi-holographic
models of low energy effective field theories.

C. Holographic Wilsonian flow for a free scalar

We now illustrate the flow equation (2.10) more explic-
itly by considering a free bulk theory with V (φ) = 1

2m
2φ2

and expanding SB in momentum space as:

SB [�,φ] = Λ(�) +

�
ddk

(2π)d
√
−γ J(k, �)φ(−k)

−1

2

�
ddk

(2π)d
√
−γ f(k, �)φ(k)φ(−k)(2.14)

where as mentioned earlier and also elaborated more in
Appendix A, f(k) is related to couplings for double-trace
operators made from O. Here and below we use the fol-
lowing notation:

kµ = (−ω, ki), ddk = dω dd−1ki,

k2 ≡
�

i

k2i , kµkµ = −gttω2 + giik2 . (2.15)

Plugging (2.14) to (2.10) we then find that

D�Λ =
1

2

�
ddk

(2π)d
J(k, �)J(−k, �), (2.16)

D�

�√
−γ J(k, �)

�
= −J(k, �) f(k, �), (2.17)

D�

�√
−γ f(�, k)

�
= −f2(k, �) + kµkµ +m2 (2.18)

where

D� =
1√
−γ

√
gzz ∂� =

1√
−g

∂� . (2.19)

By specifying the initial condition Λ0 ≡ Λ(�0), J0 ≡
J(�0) and f0 ≡ f(�0) on some initial surface z = �0, equa-
tions (2.16)–(2.18) can then be used to determine these
quantities at some other surface at z = � > �0. Since
we are working with a classical theory, we expect that
equations (2.17)–(2.18) should be related to the classical
equations of motion (2.6).5 Indeed writing equation (2.6)

5 Once J is known, (2.16) can be integrated directly.

 On the hypersurface of interest: 

γµν dx
µ dxν = −gtt(�)dt

2 + gii(�)d�x
2

√
−g =

√
−γ gzz



Interpreting flow equations

 The flow equations are simply related to the classical equations of motion. 
 One can check that f and J can be mapped to a classical solution via:
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in the first order form

∂zφ = − gzz√
−g

Π (2.20)

∂zΠ = −
√
−g

�
kµk

µ
+m2

�
φ (2.21)

it can be readily checked that given a solution φc and Πc

satisfying (2.20)–(2.21) we obtain a solution of (2.17)–

(2.18) by setting

f = − Πc√
−γφc

, J =
1√

−γφc
. (2.22)

Note that a version of equation (2.18) was derived earlier

in [26] in considering the black hole membrane paradigm

in AdS/CFT, where its interpretation in terms of RG

flow was only speculated. Using the formalism of the

holographic Wilsonian flow we are now able to give a

precise interpretation for it as the β-function equation

for double-trace couplings.

Using (2.22) one can find an explicit expression for

J(�) and f(�) in terms of the initial conditions f0, J0 at

z = �0 as follows. Consider a basis of independent solu-

tions φ1(z),φ2(z) to equations (2.20)–(2.21) with corre-

sponding canonical momenta given by π1(z),π2(z).6 At

any z we then have

φc = aφ1 + bφ2, with

�
a
b

�
= M−1

(z)
1√
−γJ

�√
−γf
1

�

(2.23)

and the matrix M is defined by

M(z) ≡
�
−π1(z) −π2(z)
φ1(z) φ2(z)

�
. (2.24)

More explicitly,

√
−γJ =

1

φ1 a+ φ2 b
,

√
−γf = −π1 a+ π2 b

φ1 a+ φ2 b
.

(2.25)

Note that a, b are integration constants which are invari-

ant under the flow and are specified by bare couplings

f0, J0 through (2.23) at z = �0. In particular,

χ ≡ b

a
= −φ1

√
−γf + π1

φ2
√
−γf + π2

(2.26)

depends only on f and is �-independent. Thus the second
equation in (2.25) leads to

√
−γf(�) = −π1(�) + π2(�)χ

φ1(�) + φ2(�)χ
. (2.27)

Applying (2.23) to z = � and z = �0, we also obtain

√
−γJ(�) =

√
−γ0J0

u(
√
−γ0f0) + v

,

6 As the equations are real, we can take φ1,2 to be real.

√
−γf(�) =

r(
√
−γ0f0) + s

u(
√
−γ0f0) + v

(2.28)

where γ0 ≡ γ(z = �0), and

�
r s
u v

�
= M(�)M−1

(�0) (2.29)

is an SL(2,R) matrix. Note that

detM(z) ≡ φ1(z)π2(z)− φ2(z)π1(z) (2.30)

is the Wronskian for φ1,φ2 and thus is z-independent.
It is also manifest from (2.29) that matrix (

r s
u v ) is inde-

pendent of the choice of basis φ1,2 as under a change of

basis

�
φ1

φ2

�
→ T

�
φ1

φ2

�
(with T a non-singular constant

matrix), M transforms as M → MT t
.

D. Some examples

Having laid out the formalism we now turn to a couple

of specific examples. We first will examine the flow of

the couplings for a free scalar field in AdSd+1 and then

comment on more general geometries.

1. Flow of double-trace couplings in the vacuum

To gain some intuition for the flow equations let us

first look at the zero momentum sector (kµ = 0) in pure

AdSd+1

ds2 =
R2

z2
�
dz2 + ηµνdx

µdxν
�
, (2.31)

for which equation (2.18) becomes

� ∂�f = −f2 −∆∆− + d f (2.32)

where we have introduced

∆ =
d

2
+ν, ν =

�
d2

4
+m2, ∆− = d−∆ (2.33)

and will henceforth set R = 1. For definiteness, we will

consider ν ∈ (0, 1) so that φ can be quantized in two

ways.
7

In the standard Dirichlet quantization, the cor-

responding single trace operator dual to φ, which we de-

note as O+, has dimension ∆, while in the alternative

quantization the corresponding (single trace) boundary

operator O−, has dimension ∆−. Thus in the alternative

7 For ν > 1, the discussion below is still valid. The difference
is that f̄ and κ− cannot be interpreted as physical couplings
any more, but as intermediate steps to obtain the description in
standard quantization.

 As such there is no simplification if we want to solve for the evolution of 
the couplings for all values of momenta. 
 However, as in the case of RG, these equations are immensely helpful in 

extracting the low energy behaviour. 

 The evolution equation for f  was derived as a bulk extension of a 
boundary two-point function to understand the change in transport 
coefficients between the boundary and a bulk black hole horizon. 

Iqbal, Liu



Double-trace flow

 To appreciate the evolution of f  consider pure AdSd+1:
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In the standard Dirichlet quantization, the cor-

responding single trace operator dual to φ, which we de-

note as O+, has dimension ∆, while in the alternative

quantization the corresponding (single trace) boundary

operator O−, has dimension ∆−. Thus in the alternative

7 For ν > 1, the discussion below is still valid. The difference
is that f̄ and κ− cannot be interpreted as physical couplings
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standard quantization.
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is that f̄ and κ− cannot be interpreted as physical couplings
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 In terms of                     one derives the beta-function equation for double 
trace couplings 
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(standard) quantization the corresponding double-trace
coupling has dimension 2ν (−2ν).

Writing f = f̄ +∆−, we find that

� ∂�f̄ = −f̄2 + 2νf̄ . (2.34)

Note that equation (2.34) coincides precisely with the
double-trace β-function found in field theories [36, 37]
for operators of dimension ∆−. It has also been studied
in the holographic context in [42].
As discussed in Appendix A, as � → 0, a continuum

limit can be defined by taking

f̄(�) = κ−�
2ν , J(�) = J−�

∆, � → 0, (2.35)

with κ−, J− fixed, corresponding to deforming the
boundary theory by a double-trace operator given by

W [O−] =

� �
J−O− − 1

2
κ−O

2
−

�
(2.36)

in the alternative quantization. The theory also has an
equivalent description in terms of the standard quantiza-
tion with a double deformation

W+[O+] =

� �
J+O+ − 1

2
κ+O

2
+

�
(2.37)

with

J+ = −J−
κ−

, κ+ = − 1

κ−
. (2.38)

With the initial condition (2.35), the flow equa-
tion (2.34) for f̄ and the corresponding equation (2.17)
for J(�) can be solved as8

f̄(�) =
κ−�2ν

1 + κ−
2ν �

2ν
, J(�) =

J−�∆

1 + κ−
2ν �

2ν
. (2.39)

f̄(�) has two fixed points (which is clear from (2.34)):
f̄ = 0 in the � → 0 limit, which is an UV fixed point, and
f̄ = 2ν in the limit � → ∞, which is the IR fixed point.
These two fixed points correspond to the alternative and
standard quantizations respectively, as can be seen from
the conformal dimension of f̄ near each of them. Below
we will refer to them as CFTUV and CFTIR respectively
(see also Table. I). Moreover, it is also easy to show that
given (2.39):

2ν
f(�)−∆−
∆− f(�)

�−2ν = κ− = const (2.40)

2ν
J(�)�−∆

∆− f(�)
= J− = const . (2.41)

The above discussion being sufficiently general, of
course also applies to near the boundary of AdS2. We
have use for this application in Sec. III.

8 One way to find solution below is to use (2.25)–(2.27) with φ1 =

z∆− ,φ2 = z∆, which are exact at pµ = 0.

2. More general geometries: flow in static, rotationally
invariant states

For a general asymptotic AdS metric (2.3) it is con-
venient to choose the basis of solutions φ1,2 (discussed
around (2.23)) that satisfy the asymptotic behavior

φ1 → z∆− , φ2 → z∆, z → 0 . (2.42)

We will take the initial surface �0, where one defines the
field theory, to be small enough so that the geometry
there is metrically close to pure AdS (2.31). Using (2.25)–
(2.27) we then find the running couplings

√
−γf(�) = −π1(�) + π2(�)χ

φ1(�) + φ2(�)χ
,

√
−γJ(�) =

2νJ0�
−∆
0

∆− f0

1

φ1(�) + φ2(�)χ
(2.43)

where

χ = �−2ν
0

f0 −∆−
∆− f0

. (2.44)

Armed with these general solutions one can make the
following observations regarding the flow of the cou-
plings:

• For f0 = ∆−, i.e., when χ = 0, which corresponds
to flowing out of the CFTUV fixed point with zero
bare double-trace couplings, one finds:

√
−γ J(�) =

J0
φ1(�)

�−∆
0 ,

√
−γ f(�) = −π1(�)

φ2(�)
.

(2.45)

• Likewise, for f0 = ∆, i.e. χ = ∞, which corre-
sponds to a flow from the CFTIR fixed point, with
zero bare double-trace couplings,

√
−γ J(�) =

J0
φ2(�)

�−∆−
0 ,

√
−γ f(�) = −π2(�)

φ2(�)
.

(2.46)

For a generic asymptotic AdS spacetime (2.3), the equa-
tions (2.45)–(2.46) involve non-trivial functions of �. This
implies that in a generic non-vacuum state (for instance
at non-zero temperature or chemical potential), double-
trace deformations are generically generated along the
renormalization group flow even if one starts with zero
bare coupling. The double-trace couplings generated
along the flow are precisely the scale-dependent “re-
sponse functions” considered in [26].

III. EXTREMAL CHARGED BLACK HOLE
AND SEMI-HOLOGRAPHY

We now apply the above discussion to the geometry
of an extremal AdS charged black hole, which describes
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double-trace β-function found in field theories [36, 37]
for operators of dimension ∆−. It has also been studied
in the holographic context in [42].
As discussed in Appendix A, as � → 0, a continuum

limit can be defined by taking

f̄(�) = κ−�
2ν , J(�) = J−�

∆, � → 0, (2.35)

with κ−, J− fixed, corresponding to deforming the
boundary theory by a double-trace operator given by

W [O−] =

� �
J−O− − 1

2
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2
−
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(2.36)

in the alternative quantization. The theory also has an
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2
κ+O

2
+

�
(2.37)

with

J+ = −J−
κ−
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With the initial condition (2.35), the flow equa-
tion (2.34) for f̄ and the corresponding equation (2.17)
for J(�) can be solved as8
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1 + κ−
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, J(�) =
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. (2.39)

f̄(�) has two fixed points (which is clear from (2.34)):
f̄ = 0 in the � → 0 limit, which is an UV fixed point, and
f̄ = 2ν in the limit � → ∞, which is the IR fixed point.
These two fixed points correspond to the alternative and
standard quantizations respectively, as can be seen from
the conformal dimension of f̄ near each of them. Below
we will refer to them as CFTUV and CFTIR respectively
(see also Table. I). Moreover, it is also easy to show that
given (2.39):

2ν
f(�)−∆−
∆− f(�)

�−2ν = κ− = const (2.40)

2ν
J(�)�−∆

∆− f(�)
= J− = const . (2.41)

The above discussion being sufficiently general, of
course also applies to near the boundary of AdS2. We
have use for this application in Sec. III.

8 One way to find solution below is to use (2.25)–(2.27) with φ1 =

z∆− ,φ2 = z∆, which are exact at pµ = 0.

2. More general geometries: flow in static, rotationally
invariant states

For a general asymptotic AdS metric (2.3) it is con-
venient to choose the basis of solutions φ1,2 (discussed
around (2.23)) that satisfy the asymptotic behavior

φ1 → z∆− , φ2 → z∆, z → 0 . (2.42)

We will take the initial surface �0, where one defines the
field theory, to be small enough so that the geometry
there is metrically close to pure AdS (2.31). Using (2.25)–
(2.27) we then find the running couplings
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,
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where
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. (2.44)

Armed with these general solutions one can make the
following observations regarding the flow of the cou-
plings:

• For f0 = ∆−, i.e., when χ = 0, which corresponds
to flowing out of the CFTUV fixed point with zero
bare double-trace couplings, one finds:

√
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�−∆
0 ,

√
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.
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• Likewise, for f0 = ∆, i.e. χ = ∞, which corre-
sponds to a flow from the CFTIR fixed point, with
zero bare double-trace couplings,
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For a generic asymptotic AdS spacetime (2.3), the equa-
tions (2.45)–(2.46) involve non-trivial functions of �. This
implies that in a generic non-vacuum state (for instance
at non-zero temperature or chemical potential), double-
trace deformations are generically generated along the
renormalization group flow even if one starts with zero
bare coupling. The double-trace couplings generated
along the flow are precisely the scale-dependent “re-
sponse functions” considered in [26].
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bare coupling. The double-trace couplings generated
along the flow are precisely the scale-dependent “re-
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implies that in a generic non-vacuum state (for instance
at non-zero temperature or chemical potential), double-
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bare coupling. The double-trace couplings generated
along the flow are precisely the scale-dependent “re-
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f̄ = 0 in the � → 0 limit, which is an UV fixed point, and
f̄ = 2ν in the limit � → ∞, which is the IR fixed point.
These two fixed points correspond to the alternative and
standard quantizations respectively, as can be seen from
the conformal dimension of f̄ near each of them. Below
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8 One way to find solution below is to use (2.25)–(2.27) with φ1 =

z∆− ,φ2 = z∆, which are exact at pµ = 0.

2. More general geometries: flow in static, rotationally
invariant states

For a general asymptotic AdS metric (2.3) it is con-
venient to choose the basis of solutions φ1,2 (discussed
around (2.23)) that satisfy the asymptotic behavior

φ1 → z∆− , φ2 → z∆, z → 0 . (2.42)

We will take the initial surface �0, where one defines the
field theory, to be small enough so that the geometry
there is metrically close to pure AdS (2.31). Using (2.25)–
(2.27) we then find the running couplings

√
−γf(�) = −π1(�) + π2(�)χ

φ1(�) + φ2(�)χ
,

√
−γJ(�) =

2νJ0�
−∆
0

∆− f0

1

φ1(�) + φ2(�)χ
(2.43)

where

χ = �−2ν
0

f0 −∆−
∆− f0

. (2.44)

Armed with these general solutions one can make the
following observations regarding the flow of the cou-
plings:

• For f0 = ∆−, i.e., when χ = 0, which corresponds
to flowing out of the CFTUV fixed point with zero
bare double-trace couplings, one finds:

√
−γ J(�) =

J0
φ1(�)

�−∆
0 ,

√
−γ f(�) = −π1(�)

φ2(�)
.

(2.45)

• Likewise, for f0 = ∆, i.e. χ = ∞, which corre-
sponds to a flow from the CFTIR fixed point, with
zero bare double-trace couplings,

√
−γ J(�) =

J0
φ2(�)

�−∆−
0 ,

√
−γ f(�) = −π2(�)

φ2(�)
.

(2.46)

For a generic asymptotic AdS spacetime (2.3), the equa-
tions (2.45)–(2.46) involve non-trivial functions of �. This
implies that in a generic non-vacuum state (for instance
at non-zero temperature or chemical potential), double-
trace deformations are generically generated along the
renormalization group flow even if one starts with zero
bare coupling. The double-trace couplings generated
along the flow are precisely the scale-dependent “re-
sponse functions” considered in [26].

III. EXTREMAL CHARGED BLACK HOLE
AND SEMI-HOLOGRAPHY

We now apply the above discussion to the geometry
of an extremal AdS charged black hole, which describes
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(standard) quantization the corresponding double-trace
coupling has dimension 2ν (−2ν).

Writing f = f̄ +∆−, we find that

� ∂�f̄ = −f̄2 + 2νf̄ . (2.34)

Note that equation (2.34) coincides precisely with the
double-trace β-function found in field theories [36, 37]
for operators of dimension ∆−. It has also been studied
in the holographic context in [42].

As discussed in Appendix A, as � → 0, a continuum
limit can be defined by taking

f̄(�) = κ−�
2ν , J(�) = J−�

∆, � → 0, (2.35)

with κ−, J− fixed, corresponding to deforming the
boundary theory by a double-trace operator given by

W [O−] =

� �
J−O− − 1

2
κ−O

2
−

�
(2.36)

in the alternative quantization. The theory also has an
equivalent description in terms of the standard quantiza-
tion with a double deformation

W+[O+] =

� �
J+O+ − 1

2
κ+O

2
+

�
(2.37)

with

J+ = −J−
κ−

, κ+ = − 1

κ−
. (2.38)

With the initial condition (2.35), the flow equa-
tion (2.34) for f̄ and the corresponding equation (2.17)
for J(�) can be solved as8

f̄(�) =
κ−�2ν

1 + κ−
2ν �

2ν
, J(�) =

J−�∆

1 + κ−
2ν �

2ν
. (2.39)

f̄(�) has two fixed points (which is clear from (2.34)):
f̄ = 0 in the � → 0 limit, which is an UV fixed point, and
f̄ = 2ν in the limit � → ∞, which is the IR fixed point.
These two fixed points correspond to the alternative and
standard quantizations respectively, as can be seen from
the conformal dimension of f̄ near each of them. Below
we will refer to them as CFTUV and CFTIR respectively
(see also Table. I). Moreover, it is also easy to show that
given (2.39):

2ν
f(�)−∆−
∆− f(�)

�−2ν = κ− = const (2.40)

2ν
J(�)�−∆

∆− f(�)
= J− = const . (2.41)

The above discussion being sufficiently general, of
course also applies to near the boundary of AdS2. We
have use for this application in Sec. III.

8 One way to find solution below is to use (2.25)–(2.27) with φ1 =

z∆− ,φ2 = z∆, which are exact at pµ = 0.
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• Likewise, for f0 = ∆, i.e. χ = ∞, which corre-
sponds to a flow from the CFTIR fixed point, with
zero bare double-trace couplings,
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(2.46)

For a generic asymptotic AdS spacetime (2.3), the equa-
tions (2.45)–(2.46) involve non-trivial functions of �. This
implies that in a generic non-vacuum state (for instance
at non-zero temperature or chemical potential), double-
trace deformations are generically generated along the
renormalization group flow even if one starts with zero
bare coupling. The double-trace couplings generated
along the flow are precisely the scale-dependent “re-
sponse functions” considered in [26].

III. EXTREMAL CHARGED BLACK HOLE
AND SEMI-HOLOGRAPHY

We now apply the above discussion to the geometry
of an extremal AdS charged black hole, which describes
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f̄(�) has two fixed points (which is clear from (2.34)):
f̄ = 0 in the � → 0 limit, which is an UV fixed point, and
f̄ = 2ν in the limit � → ∞, which is the IR fixed point.
These two fixed points correspond to the alternative and
standard quantizations respectively, as can be seen from
the conformal dimension of f̄ near each of them. Below
we will refer to them as CFTUV and CFTIR respectively
(see also Table. I). Moreover, it is also easy to show that
given (2.39):
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�−2ν = κ− = const (2.40)
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∆− f(�)
= J− = const . (2.41)

The above discussion being sufficiently general, of
course also applies to near the boundary of AdS2. We
have use for this application in Sec. III.

8 One way to find solution below is to use (2.25)–(2.27) with φ1 =

z∆− ,φ2 = z∆, which are exact at pµ = 0.

2. More general geometries: flow in static, rotationally
invariant states
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√
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,

√
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0
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1

φ1(�) + φ2(�)χ
(2.43)

where
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0

f0 −∆−
∆− f0

. (2.44)

Armed with these general solutions one can make the
following observations regarding the flow of the cou-
plings:

• For f0 = ∆−, i.e., when χ = 0, which corresponds
to flowing out of the CFTUV fixed point with zero
bare double-trace couplings, one finds:

√
−γ J(�) =

J0
φ1(�)

�−∆
0 ,

√
−γ f(�) = −π1(�)

φ2(�)
.

(2.45)

• Likewise, for f0 = ∆, i.e. χ = ∞, which corre-
sponds to a flow from the CFTIR fixed point, with
zero bare double-trace couplings,

√
−γ J(�) =

J0
φ2(�)
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0 ,

√
−γ f(�) = −π2(�)

φ2(�)
.

(2.46)

For a generic asymptotic AdS spacetime (2.3), the equa-
tions (2.45)–(2.46) involve non-trivial functions of �. This
implies that in a generic non-vacuum state (for instance
at non-zero temperature or chemical potential), double-
trace deformations are generically generated along the
renormalization group flow even if one starts with zero
bare coupling. The double-trace couplings generated
along the flow are precisely the scale-dependent “re-
sponse functions” considered in [26].

III. EXTREMAL CHARGED BLACK HOLE
AND SEMI-HOLOGRAPHY

We now apply the above discussion to the geometry
of an extremal AdS charged black hole, which describes
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Semi-holographic models

 Investigations of retarded Green’s functions of probe fields in extremal 
black hole backgrounds have revealed interesting behaviour:
 scalars tend to want to condense in the near horizon 
 fermionic Green’s functions reveal characteristics of Fermi surface, with 

non-Fermi liquid behaviour

 In all cases the interesting physics seems to be due to the infinite throat of 
extremal black holes, resulting in an AdS2 geometry in the near horizon.

Kunduri, Lucietti, Reall

 The effective description of these systems can be captured in terms of 
semi-holographic models. 
 These models take seriously the AdS2 part of the spacetime and imagine 

the CFT degrees of freedom coupled to near-horizon modes. 
Faulkner, Polchinski

Gubser

Hartnoll, Herzog, HorowitzKunduri, Lucietti, Reall

Faulkner, Liu, McGreevy, Vegh
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Semi-holographic models

 By analyzing the behaviour of double-trace operators one can derive the 
semi-holographic description from the effective action SB.
 Integrate the flow equation & relate the double-trace deformation of the 

UV/boundary theory to that of the IR/AdS2 theory.
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AdSd+1 region. We may assume that this cut-off the-

ory has double-trace operator turned on. The double-

trace coupling κU in CFT
UV

is related to the value of

f(�0) = f0 as in (2.40), i.e.,

κU ≡ 2ν �−2ν
0

f0 −∆−
∆− f0

. (3.7)

We then integrate out the degrees of freedom all the

way to a hypersurface (which we refer to as the IR sur-

face) at z = � ≈ z∗ near the boundary of AdS2 (see

Fig. 2) Now the effective action SB on the IR surface can

be considered as providing boundary conditions for fields

in the AdS2. From the point of view of the boundary

field theory dual to this near horizon geometry it corre-

sponds to multiple-trace deformations of the eCFT1. We

again consider the free theory, which allows us to restrict

attention to double-trace deformations. For νk ∈ (0, 1)
as discussed in Appendix A and Sec. IID 1, such defor-

mations can be described using two equivalent descrip-

tions, in either the standard or the alternative quanti-

zation in the AdS2 region. We will use the description

in the alternative quantization below as it is is slightly

more convenient. However, when νk ≥ 1, the alternative

quantization is disallowed, reflecting an important phys-

ical difference in this case; we will comment on this at

the end once we understand the basic issues.

Applying the discussion of section IID 1 to AdS2 and

its field theory dual, the double-trace couplings in the

dual eCFT
UV

(alternative quantization) can be expressed

in terms of bulk parameters in SB defined on the IR

surface as
9

κI(�) ≡ 2νk

f(�)√
d(d−1)

− δ−

δ+ − f(�)√
d(d−1)

(z∗ − �)2νk (3.8)

Using (2.43) and the change of basis (3.6) one can relate

κI to κU as

κI = − b+ − κU a+
b− − κU a−

. (3.9)

C. Gapless modes in the UV region and
semi-holography

Consider for example starting in the UV from the fixed

point corresponding to standard quantization of CFTd,

i.e., with CFT
IR
d which implies that κU → ∞. We then

find from (3.9) that the double-trace coupling for the

eCFT
UV

to be

κI = −a+
a−

. (3.10)

9 The factor 1√
d(d−1)

multiplying f(�) in the equation below has

its origins in the fact that f is defined in terms of AdS scale R
and that the curvature radius between AdSd+1 and AdS2 differ
by this factor.

Suppose that a+ has a zero at some momentum kF . Then
at kF , the system is forced to sit at the unstable UV fixed

point eCFT
UV

. At kF , κI has small frequency expansion

as

κI = cω2
+ · · · (3.11)

In terms of standard quantization, the corresponding

double-trace coupling κ(+)
I is the inverse of κI (see for

instance (A33)), thus at kF , the effective action in the

standard quantization becomes

1

2

�
1

cω2 + · · · Ψ
2
+ (3.12)

for the dual operator Ψ+ in eCFT1, which is manifestly

non-local. The reason for this non-locality is that, for

a+ = 0, in the region between the IR and UV surfaces

(z = � and z = �0 respectively), there exists a normaliz-

able mode
10

which corresponds to a gapless mode of the

boundary theory CFTd. The non-local nature of (3.12)

arises from integrating out such gapless modes. When

νk ∈ (0, 1) such non-locality does not cause a problem,

as we can describe the same physics using the alternative

quantization for AdS2, for which the effective action

1

2

�
κIΨ

2
− (3.13)

is perfectly defined at k = kF . In other words, for νk ∈
(0, 1), there exists an IR description in which the gapless

modes in the UV do not play a role. In fact, since we had

a-priori assumed to be in the domain where νk ∈ (0, 1),
using the language of alternative quantization we arrived

at (3.13) naturally.

However, for νk > 1, we are no longer able to use

the alternative quantization in the near horizon AdS2 for

eCFT1. In such a situation one is forced working with

the formalism appropriate for the standard quantization.

The above general discussion still applies of course, but

we need to work with (3.12). In order to have local effec-
tive actions we should isolate the modes which become

gapless in the intermediate region. The way to do this is

readily suggested by the bulk action. Writing the bulk

action as

S = S0(z > �) + Sct(z = �) +

�

z=�

1

2
κI φ

2
0 (3.14)

one now treats the boundary value φ0 of the bulk field

φ as as source for the boundary theory operator Ψ+. As

discussed in Appendix A, eS0+Sct gives the generating

functional

�
e
�
φ0Ψ+

�
in the standard quantization. Thus

10 Note that for a+ = 0, the mode η+ is normalizable for both
z → z∗ and z → 0.

 For standard quantization of the UV theory, and the IR physics is 
governed by the coefficients a± since                .
 Scalar instability, Fermi surfaces, etc., are related to zeros of  a+ which 

occur at some special values of momenta. 
 In the vicinity of these points in momentum space, 

κU → ∞
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0

f0 −∆−
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We then integrate out the degrees of freedom all the

way to a hypersurface (which we refer to as the IR sur-

face) at z = � ≈ z∗ near the boundary of AdS2 (see

Fig. 2) Now the effective action SB on the IR surface can

be considered as providing boundary conditions for fields

in the AdS2. From the point of view of the boundary

field theory dual to this near horizon geometry it corre-

sponds to multiple-trace deformations of the eCFT1. We

again consider the free theory, which allows us to restrict

attention to double-trace deformations. For νk ∈ (0, 1)
as discussed in Appendix A and Sec. IID 1, such defor-

mations can be described using two equivalent descrip-

tions, in either the standard or the alternative quanti-

zation in the AdS2 region. We will use the description

in the alternative quantization below as it is is slightly

more convenient. However, when νk ≥ 1, the alternative

quantization is disallowed, reflecting an important phys-

ical difference in this case; we will comment on this at

the end once we understand the basic issues.

Applying the discussion of section IID 1 to AdS2 and
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κI to κU as

κI = − b+ − κU a+
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. (3.9)

C. Gapless modes in the UV region and
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Consider for example starting in the UV from the fixed

point corresponding to standard quantization of CFTd,

i.e., with CFT
IR
d which implies that κU → ∞. We then

find from (3.9) that the double-trace coupling for the

eCFT
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to be
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. (3.10)
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multiplying f(�) in the equation below has
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as
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1

2

�
1

cω2 + · · · Ψ
2
+ (3.12)

for the dual operator Ψ+ in eCFT1, which is manifestly

non-local. The reason for this non-locality is that, for
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boundary theory CFTd. The non-local nature of (3.12)
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modes in the UV do not play a role. In fact, since we had

a-priori assumed to be in the domain where νk ∈ (0, 1),
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at (3.13) naturally.

However, for νk > 1, we are no longer able to use

the alternative quantization in the near horizon AdS2 for

eCFT1. In such a situation one is forced working with

the formalism appropriate for the standard quantization.

The above general discussion still applies of course, but

we need to work with (3.12). In order to have local effec-
tive actions we should isolate the modes which become

gapless in the intermediate region. The way to do this is
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φ as as source for the boundary theory operator Ψ+. As
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 The effective action for AdS2 is rendered non-local
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multiplying f(�) in the equation below has

its origins in the fact that f is defined in terms of AdS scale R
and that the curvature radius between AdSd+1 and AdS2 differ
by this factor.

Suppose that a+ has a zero at some momentum kF . Then
at kF , the system is forced to sit at the unstable UV fixed

point eCFT
UV

. At kF , κI has small frequency expansion

as

κI = cω2
+ · · · (3.11)

In terms of standard quantization, the corresponding

double-trace coupling κ(+)
I is the inverse of κI (see for

instance (A33)), thus at kF , the effective action in the

standard quantization becomes

1
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�
1

cω2 + · · · Ψ
2
+ (3.12)

for the dual operator Ψ+ in eCFT1, which is manifestly

non-local. The reason for this non-locality is that, for

a+ = 0, in the region between the IR and UV surfaces

(z = � and z = �0 respectively), there exists a normaliz-

able mode
10

which corresponds to a gapless mode of the

boundary theory CFTd. The non-local nature of (3.12)

arises from integrating out such gapless modes. When

νk ∈ (0, 1) such non-locality does not cause a problem,

as we can describe the same physics using the alternative

quantization for AdS2, for which the effective action

1

2

�
κIΨ

2
− (3.13)

is perfectly defined at k = kF . In other words, for νk ∈
(0, 1), there exists an IR description in which the gapless

modes in the UV do not play a role. In fact, since we had

a-priori assumed to be in the domain where νk ∈ (0, 1),
using the language of alternative quantization we arrived

at (3.13) naturally.

However, for νk > 1, we are no longer able to use

the alternative quantization in the near horizon AdS2 for

eCFT1. In such a situation one is forced working with

the formalism appropriate for the standard quantization.

The above general discussion still applies of course, but

we need to work with (3.12). In order to have local effec-
tive actions we should isolate the modes which become

gapless in the intermediate region. The way to do this is

readily suggested by the bulk action. Writing the bulk

action as

S = S0(z > �) + Sct(z = �) +

�

z=�

1

2
κI φ

2
0 (3.14)

one now treats the boundary value φ0 of the bulk field

φ as as source for the boundary theory operator Ψ+. As

discussed in Appendix A, eS0+Sct gives the generating

functional

�
e
�
φ0Ψ+

�
in the standard quantization. Thus

10 Note that for a+ = 0, the mode η+ is normalizable for both
z → z∗ and z → 0.
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AdSd+1 region. We may assume that this cut-off the-
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is related to the value of

f(�0) = f0 as in (2.40), i.e.,
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We then integrate out the degrees of freedom all the

way to a hypersurface (which we refer to as the IR sur-

face) at z = � ≈ z∗ near the boundary of AdS2 (see

Fig. 2) Now the effective action SB on the IR surface can

be considered as providing boundary conditions for fields

in the AdS2. From the point of view of the boundary

field theory dual to this near horizon geometry it corre-

sponds to multiple-trace deformations of the eCFT1. We

again consider the free theory, which allows us to restrict

attention to double-trace deformations. For νk ∈ (0, 1)
as discussed in Appendix A and Sec. IID 1, such defor-

mations can be described using two equivalent descrip-

tions, in either the standard or the alternative quanti-

zation in the AdS2 region. We will use the description

in the alternative quantization below as it is is slightly

more convenient. However, when νk ≥ 1, the alternative

quantization is disallowed, reflecting an important phys-

ical difference in this case; we will comment on this at

the end once we understand the basic issues.

Applying the discussion of section IID 1 to AdS2 and

its field theory dual, the double-trace couplings in the

dual eCFT
UV

(alternative quantization) can be expressed

in terms of bulk parameters in SB defined on the IR

surface as
9
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modes in the UV do not play a role. In fact, since we had

a-priori assumed to be in the domain where νk ∈ (0, 1),
using the language of alternative quantization we arrived

at (3.13) naturally.

However, for νk > 1, we are no longer able to use

the alternative quantization in the near horizon AdS2 for

eCFT1. In such a situation one is forced working with

the formalism appropriate for the standard quantization.

The above general discussion still applies of course, but

we need to work with (3.12). In order to have local effec-
tive actions we should isolate the modes which become

gapless in the intermediate region. The way to do this is

readily suggested by the bulk action. Writing the bulk

action as

S = S0(z > �) + Sct(z = �) +

�

z=�

1

2
κI φ

2
0 (3.14)

one now treats the boundary value φ0 of the bulk field

φ as as source for the boundary theory operator Ψ+. As

discussed in Appendix A, eS0+Sct gives the generating

functional

�
e
�
φ0Ψ+

�
in the standard quantization. Thus

10 Note that for a+ = 0, the mode η+ is normalizable for both
z → z∗ and z → 0.

9

AdSd+1 region. We may assume that this cut-off the-

ory has double-trace operator turned on. The double-

trace coupling κU in CFT
UV

is related to the value of

f(�0) = f0 as in (2.40), i.e.,

κU ≡ 2ν �−2ν
0

f0 −∆−
∆− f0

. (3.7)

We then integrate out the degrees of freedom all the

way to a hypersurface (which we refer to as the IR sur-

face) at z = � ≈ z∗ near the boundary of AdS2 (see

Fig. 2) Now the effective action SB on the IR surface can

be considered as providing boundary conditions for fields

in the AdS2. From the point of view of the boundary

field theory dual to this near horizon geometry it corre-

sponds to multiple-trace deformations of the eCFT1. We

again consider the free theory, which allows us to restrict

attention to double-trace deformations. For νk ∈ (0, 1)
as discussed in Appendix A and Sec. IID 1, such defor-

mations can be described using two equivalent descrip-

tions, in either the standard or the alternative quanti-

zation in the AdS2 region. We will use the description

in the alternative quantization below as it is is slightly

more convenient. However, when νk ≥ 1, the alternative

quantization is disallowed, reflecting an important phys-

ical difference in this case; we will comment on this at

the end once we understand the basic issues.

Applying the discussion of section IID 1 to AdS2 and

its field theory dual, the double-trace couplings in the

dual eCFT
UV

(alternative quantization) can be expressed

in terms of bulk parameters in SB defined on the IR

surface as
9

κI(�) ≡ 2νk

f(�)√
d(d−1)

− δ−

δ+ − f(�)√
d(d−1)

(z∗ − �)2νk (3.8)

Using (2.43) and the change of basis (3.6) one can relate

κI to κU as

κI = − b+ − κU a+
b− − κU a−

. (3.9)

C. Gapless modes in the UV region and
semi-holography

Consider for example starting in the UV from the fixed

point corresponding to standard quantization of CFTd,

i.e., with CFT
IR
d which implies that κU → ∞. We then

find from (3.9) that the double-trace coupling for the

eCFT
UV

to be

κI = −a+
a−

. (3.10)

9 The factor 1√
d(d−1)

multiplying f(�) in the equation below has

its origins in the fact that f is defined in terms of AdS scale R
and that the curvature radius between AdSd+1 and AdS2 differ
by this factor.

Suppose that a+ has a zero at some momentum kF . Then
at kF , the system is forced to sit at the unstable UV fixed

point eCFT
UV

. At kF , κI has small frequency expansion

as

κI = cω2
+ · · · (3.11)

In terms of standard quantization, the corresponding

double-trace coupling κ(+)
I is the inverse of κI (see for

instance (A33)), thus at kF , the effective action in the

standard quantization becomes

1

2

�
1

cω2 + · · · Ψ
2
+ (3.12)

for the dual operator Ψ+ in eCFT1, which is manifestly

non-local. The reason for this non-locality is that, for

a+ = 0, in the region between the IR and UV surfaces

(z = � and z = �0 respectively), there exists a normaliz-

able mode
10

which corresponds to a gapless mode of the

boundary theory CFTd. The non-local nature of (3.12)

arises from integrating out such gapless modes. When

νk ∈ (0, 1) such non-locality does not cause a problem,

as we can describe the same physics using the alternative

quantization for AdS2, for which the effective action

1

2

�
κIΨ

2
− (3.13)

is perfectly defined at k = kF . In other words, for νk ∈
(0, 1), there exists an IR description in which the gapless

modes in the UV do not play a role. In fact, since we had

a-priori assumed to be in the domain where νk ∈ (0, 1),
using the language of alternative quantization we arrived

at (3.13) naturally.

However, for νk > 1, we are no longer able to use

the alternative quantization in the near horizon AdS2 for

eCFT1. In such a situation one is forced working with
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in the standard quantization. Thus
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�
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�
φ0 Ψ+

�
10

at k = kF , the system can be described by the following
low energy effective theory

1

2

�
c2 (∂tφ0)

2 +

�
φ0Ψ+ (3.15)

which is precisely the semi-holographic description.
The physical difference between νk ∈ (0, 1) and νk ≥ 1

can be understood as follows. The IR contribution to the
two point correlation function of Ψ+ is proportional to
ω2νk (this follows from the AdS2 geometry or equivalently
from conformal symmetry in eCFT1). When νk ∈ (0, 1)
this IR contribution dominates over the standard analytic
contribution ω2 from the UV region. As a result the
gapless mode in the intermediate or UV region does not
play a dominant role as ω → 0. This is reflected by
the existence of an alternative quantization scheme in
which the non-locality does not arise. However, when
νk > 1, the analytic contribution ω2 dominates over the
IR contribution and we can no longer ignore it. Thus we
need to explicitly include it in our low energy effective
action (3.15) rather than integrating it out.
In the above we have used the example of a neutral

scalar example for illustrative purpose. One can develop
a parallel story which applies to a charged spinor field
for which such a kF > 0 indeed exists for certain range
of mass and charge of a spinor field [27–29]. The gapless
modes in the UV region around kF can then be inter-
preted as free fermions (in the large N limit) around a
Fermi surface. The main difference for a fermion (or a
charge scalar field) is that the window for imposing al-
ternative quantization is νk ∈ (0, 1

2 ). But the small fre-
quency expansion for these fields now starts at linear in
ω rather quadratic. Again we find that the above story
applies. Note that in the parameter region νk ∈ (0, 1

2 ) it
is precisely the strong IR contribution which leads to the
breakdown of quasi-particle description near the Fermi
surface [27].
For scalar fields, it can happen that one is able to tune

the parameters of the UV CFT, so as to ensure the van-
ishing of κI at kF = 0. This indicates the onset of an
instability and the corresponding gapless modes then de-
scribe gapless fluctuations of the order parameter at a
quantum critical point.

More generally, one can fine tune the double-trace cou-
pling (in the appropriate range) κU at the UV surface,
to make the numerator of (3.9) vanish. Once again this
leads to Fermi surfaces for spinors [31] and quantum
phase transitions for scalars as described recently in [41].

IV. VECTOR FIELD AND DIFFUSION ON THE
HORIZON

We now turn to the analysis of a vector field in the
bulk spacetime, which is dual to a conserved current of
the boundary theory. We again derive flow equations for
various double-trace couplings. Here the story is more
intricate due to presence of gauge modes. In particular,

we find the that qualitative features of the effective action
SB depends sensitively on what boundary conditions one
imposes at the infinity.

For a boundary field theory at a non-zero temperature
(which is described by a black hole in the bulk) the low
energy behavior of a conserved current is governed by dif-
fusion. As an application for our formalism, we push the
cut-off surface all the way to the stretched horizon and
show that the diffusion mode can indeed be recovered
by coupling the stretched horizon to the effective action
SB coming from integrating out the rest of the geometry.
In achieving this taking into account the gauge symme-
tries of SB plays a crucial role. Our derivation may be
considered a baby version of a more refined black hole
membrane paradigm.

A. Flow equations for vectors

We consider the following general gauge invariant ac-
tion in a general background (2.3)

S = S0[z > �, AM ] + SB [AM , �] (4.1)

where for definiteness we will focus on the Maxwell La-
grangian

S0 = −1

4

�

z>�
dd+1x

√
−g FMN FMN . (4.2)

As before SB is the boundary action for the gauge field
degrees of freedom living on the cut-off surface z = � and
again xM = (z, xµ) = (z, t, xi). The equations of motion
are just the bulk Maxwell equations

∂M
�√

−g FMN
�
= 0 (4.3)

with boundary condition

ΠM ≡ −
√
−gF zM =

δSB

δAM
. (4.4)

Setting M = z in the above equation we conclude that

δSB

δAz
= 0 (4.5)

for components of the boundary conditions tangential to
the boundary,

Πµ ≡ −
√
−gF zµ =

δSB

δAµ
. (4.6)

The equations of motion (4.3) can be written as a con-
servation of equation

∂µΠ
µ = 0 (4.7)

and an evolution equation

∂zΠ
µ + ∂ν

�√
−gF νµ

�
= 0 (4.8)

 The gapless mode ensures locality of the low energy effective action. One 
simply has
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energy behavior of a conserved current is governed by dif-
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show that the diffusion mode can indeed be recovered
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SB coming from integrating out the rest of the geometry.
In achieving this taking into account the gauge symme-
tries of SB plays a crucial role. Our derivation may be
considered a baby version of a more refined black hole
membrane paradigm.
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S = S0[z > �, AM ] + SB [AM , �] (4.1)

where for definiteness we will focus on the Maxwell La-
grangian

S0 = −1

4
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√
−g FMN FMN . (4.2)

As before SB is the boundary action for the gauge field
degrees of freedom living on the cut-off surface z = � and
again xM = (z, xµ) = (z, t, xi). The equations of motion
are just the bulk Maxwell equations

∂M
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−g FMN
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= 0 (4.3)

with boundary condition

ΠM ≡ −
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−gF zM =

δSB

δAM
. (4.4)

Setting M = z in the above equation we conclude that

δSB

δAz
= 0 (4.5)

for components of the boundary conditions tangential to
the boundary,

Πµ ≡ −
√
−gF zµ =

δSB

δAµ
. (4.6)

The equations of motion (4.3) can be written as a con-
servation of equation

∂µΠ
µ = 0 (4.7)

and an evolution equation

∂zΠ
µ + ∂ν

�√
−gF νµ

�
= 0 (4.8)

∂�SB [Aµ, �] = −
�

z=�
ddx

√
−g

�
1

2γ
gµν

δSB

δAµ

δSB

δAν
+

1

4
FµνF

µν

�
+

�
ddx ∂µ

δSB

δAµ
Az .

 In order to understand the flow we need to sort out issues relating to 
gauge symmetries. Two possibilities:
  Dirichlet boundary condition for the Maxwell field
 Neumann boundary condition (admissible in d=3 and d=4). 



Vectors with Dirichlet bc

  The Dirichlet bc is the conventional bc for vectors in AdS/CFT at the 
boundary. We simply fix the boundary value of the gauge field

12

immediately write down the flow equations for transverse
components from (2.17)–(2.18),

D�

�√
−γ J

i
T (k, �)

�
= −J

i
T (k, �) fT (k, �) (4.20)

D�

�
g
ii√−γ fT (k, �)

�
= g

ii
�
−f

2
T (k, �) + kµk

µ
�
(4.21)

where D� was introduced in (2.19). The analysis of these
equations is similar to the case of the scalar discussed in
Sec. II C. The equation for cosmological constant Λ is

D�Λ =
1

2

�
ddk

(2π)d
J
µ(k, �) Jµ(−k, �) . (4.22)

Plugging (4.18) into (4.11) one also finds the following
equations for the longitudinal components

D�

�√
−γ J

0(k, �)
�
= −kµk

µ
hL(k, �) J

0 (4.23)

D�

�
g
tt
g
ii √−γ hL(k, �)

�
= g

tt
g
ii
�
1− h

2
L(k, �) kµk

µ
�

(4.24)

where in writing down (4.23) we have used (4.19).
A version of equations (4.21) and (4.24) were de-

rived before [26], where these equations arose as the flow
equations of longitudinal and transverse conductivities.
This connection also helps to express solutions of (4.20)–
(4.24) in terms of solutions of classical equations of mo-
tion (4.7)–(4.8)

fT = −gii
Πi

T

AT
i

, J
i
T =

1
√
−γAT

i

(4.25)

hL =
gttgii

iω

ΠL

√
−γ EL

, J
0 =

1√
−γ EL

.(4.26)

Let us look at the lowest order expression for SB in
small ω and k expansion. For the transverse flow equa-
tion (4.21), in the limit ω = k = 0, one should take
fT = 0. This follows from the fact that one requires
fT (�) → 0 as � → 0 (to keep the fixed point theory
free of the A2

T term). As a result we conclude that
fT ∝ O(k2,ω2). Now writing

√
−γgiifT = −λ0 ω

2 + λ1 k
2 + · · · (4.27)

we find

λ0(�) = λ0(�0) +

� �

�0

dz
√
−gg

ii
g
tt
,

λ1(�) = λ1(�0) +

� �

�0

dz
√
−g(gii)2 (4.28)

Similarly consider (4.24) with kµ = 0, we find for κ ≡
gttgii

√
−γ hL

κ(�) = κ(�0) +

� �

�0

dz
√
−gg

tt
g
ii (4.29)

We should choose boundary conditions such that the co-
efficients λ0(�0),λ1(�0),κ(�0) → 0 as �0 → 0. Note that
as z → 0, all the integrands in equations (4.28) and (4.29)

behave as z4−d. As a result one obtains divergent inte-
grals in the limit �0 → 0 in d ≥ 4. This implies that a
sensible continuum limit cannot be taken, which appears
to be consistent with the conclusions based on normal-
izability [44]. Note that for d = 2, 3, the inverse of λ0,1

and κ can be interpreted as the induced gauge coupling.
Despite we start with a dynamical gauge theory with no
kinetic term at UV z = 0, kinetic terms nevertheless are
generically generated along the flow.

C. Dirichlet boundary condition at infinity

Let us now consider the situation where that at infinity
we use the standard Dirichlet boundary condition, i.e.,
require

Aµ(z = 0, x) = Bµ(x). (4.30)

By the AdS/CFT dictionary, Bµ interpreted as an ex-
ternal source coupled to the conserved current jµ of the
CFT. As such it is important to note that Bµ is not dy-
namical and there is no gauge symmetry associated with
it.
We now integrate out AM to some hypersurface at z =

�, then the boundary action SB at z = � is obtained by
performing the path integral

e
iSB [AM ,�] =

� ÃM (z=�,x)=AM (x)

Ãµ(z=0,x)=Bµ(x)
[DÃM ] eiS0[ÃM ]

. (4.31)

where S0 is given by (4.2).
We will now set the gauge

Ãz = 0, z ∈ [0, �] (4.32)

by considering a gauge transformation λ(z, x) which sat-
isfies λ(z = 0) = 0 (so that Bµ is unchanged)

λ(z, x) =

� z

0
dz

�
Ãz(z

�
, x) . (4.33)

Such a gauge transformation now shifts the upper bound-
ary condition of (4.31) to

Ãµ(z = �) = Âµ ≡ Aµ − ∂µϕ, ϕ(x) =

� �

0
dz Ãz .

(4.34)
The path integral over Ãz now reduces to that over ϕ
which depends only on xµ. Thus the left hand side
of (4.31) can be written as

�
Dϕ(x) eSB [Âµ,�] . (4.35)

ϕ is precisely the “Goldstone” mode introduced in [20].
As emphasized there it is gapless and should be retained
in the low energy theory. This is manifest in (4.35) as
ϕ appears only with derivatives and we choose not to
integrate it out. Note that the new gauge potential Âµ

  Perform the bulk path integral integrating out modes living between 
boundary and the cut-off surface.
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immediately write down the flow equations for transverse
components from (2.17)–(2.18),

D�

�√
−γ J

i
T (k, �)

�
= −J

i
T (k, �) fT (k, �) (4.20)

D�

�
g
ii√−γ fT (k, �)

�
= g

ii
�
−f

2
T (k, �) + kµk

µ
�
(4.21)

where D� was introduced in (2.19). The analysis of these
equations is similar to the case of the scalar discussed in
Sec. II C. The equation for cosmological constant Λ is

D�Λ =
1

2

�
ddk

(2π)d
J
µ(k, �) Jµ(−k, �) . (4.22)

Plugging (4.18) into (4.11) one also finds the following
equations for the longitudinal components

D�

�√
−γ J

0(k, �)
�
= −kµk

µ
hL(k, �) J

0 (4.23)

D�

�
g
tt
g
ii √−γ hL(k, �)

�
= g

tt
g
ii
�
1− h

2
L(k, �) kµk

µ
�

(4.24)

where in writing down (4.23) we have used (4.19).
A version of equations (4.21) and (4.24) were de-

rived before [26], where these equations arose as the flow
equations of longitudinal and transverse conductivities.
This connection also helps to express solutions of (4.20)–
(4.24) in terms of solutions of classical equations of mo-
tion (4.7)–(4.8)

fT = −gii
Πi

T

AT
i

, J
i
T =

1
√
−γAT

i

(4.25)

hL =
gttgii

iω

ΠL

√
−γ EL

, J
0 =

1√
−γ EL

.(4.26)

Let us look at the lowest order expression for SB in
small ω and k expansion. For the transverse flow equa-
tion (4.21), in the limit ω = k = 0, one should take
fT = 0. This follows from the fact that one requires
fT (�) → 0 as � → 0 (to keep the fixed point theory
free of the A2

T term). As a result we conclude that
fT ∝ O(k2,ω2). Now writing

√
−γgiifT = −λ0 ω

2 + λ1 k
2 + · · · (4.27)

we find

λ0(�) = λ0(�0) +

� �

�0

dz
√
−gg

ii
g
tt
,

λ1(�) = λ1(�0) +

� �

�0

dz
√
−g(gii)2 (4.28)

Similarly consider (4.24) with kµ = 0, we find for κ ≡
gttgii

√
−γ hL

κ(�) = κ(�0) +

� �

�0

dz
√
−gg

tt
g
ii (4.29)

We should choose boundary conditions such that the co-
efficients λ0(�0),λ1(�0),κ(�0) → 0 as �0 → 0. Note that
as z → 0, all the integrands in equations (4.28) and (4.29)

behave as z4−d. As a result one obtains divergent inte-
grals in the limit �0 → 0 in d ≥ 4. This implies that a
sensible continuum limit cannot be taken, which appears
to be consistent with the conclusions based on normal-
izability [44]. Note that for d = 2, 3, the inverse of λ0,1

and κ can be interpreted as the induced gauge coupling.
Despite we start with a dynamical gauge theory with no
kinetic term at UV z = 0, kinetic terms nevertheless are
generically generated along the flow.

C. Dirichlet boundary condition at infinity

Let us now consider the situation where that at infinity
we use the standard Dirichlet boundary condition, i.e.,
require

Aµ(z = 0, x) = Bµ(x). (4.30)

By the AdS/CFT dictionary, Bµ interpreted as an ex-
ternal source coupled to the conserved current jµ of the
CFT. As such it is important to note that Bµ is not dy-
namical and there is no gauge symmetry associated with
it.
We now integrate out AM to some hypersurface at z =

�, then the boundary action SB at z = � is obtained by
performing the path integral

e
iSB [AM ,�] =

� ÃM (z=�,x)=AM (x)

Ãµ(z=0,x)=Bµ(x)
[DÃM ] eiS0[ÃM ]

. (4.31)

where S0 is given by (4.2).
We will now set the gauge

Ãz = 0, z ∈ [0, �] (4.32)

by considering a gauge transformation λ(z, x) which sat-
isfies λ(z = 0) = 0 (so that Bµ is unchanged)

λ(z, x) =

� z

0
dz

�
Ãz(z

�
, x) . (4.33)

Such a gauge transformation now shifts the upper bound-
ary condition of (4.31) to

Ãµ(z = �) = Âµ ≡ Aµ − ∂µϕ, ϕ(x) =

� �

0
dz Ãz .

(4.34)
The path integral over Ãz now reduces to that over ϕ
which depends only on xµ. Thus the left hand side
of (4.31) can be written as

�
Dϕ(x) eSB [Âµ,�] . (4.35)

ϕ is precisely the “Goldstone” mode introduced in [20].
As emphasized there it is gapless and should be retained
in the low energy theory. This is manifest in (4.35) as
ϕ appears only with derivatives and we choose not to
integrate it out. Note that the new gauge potential Âµ

  Choose radial gauge and incorporate the Goldstone mode   
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immediately write down the flow equations for transverse
components from (2.17)–(2.18),
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where D� was introduced in (2.19). The analysis of these
equations is similar to the case of the scalar discussed in
Sec. II C. The equation for cosmological constant Λ is
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1

2
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ddk
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Plugging (4.18) into (4.11) one also finds the following
equations for the longitudinal components
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where in writing down (4.23) we have used (4.19).
A version of equations (4.21) and (4.24) were de-

rived before [26], where these equations arose as the flow
equations of longitudinal and transverse conductivities.
This connection also helps to express solutions of (4.20)–
(4.24) in terms of solutions of classical equations of mo-
tion (4.7)–(4.8)

fT = −gii
Πi

T

AT
i

, J
i
T =

1
√
−γAT

i

(4.25)

hL =
gttgii

iω

ΠL

√
−γ EL

, J
0 =

1√
−γ EL
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Let us look at the lowest order expression for SB in
small ω and k expansion. For the transverse flow equa-
tion (4.21), in the limit ω = k = 0, one should take
fT = 0. This follows from the fact that one requires
fT (�) → 0 as � → 0 (to keep the fixed point theory
free of the A2

T term). As a result we conclude that
fT ∝ O(k2,ω2). Now writing

√
−γgiifT = −λ0 ω

2 + λ1 k
2 + · · · (4.27)

we find

λ0(�) = λ0(�0) +
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�0

dz
√
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,

λ1(�) = λ1(�0) +
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Similarly consider (4.24) with kµ = 0, we find for κ ≡
gttgii
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κ(�) = κ(�0) +
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√
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We should choose boundary conditions such that the co-
efficients λ0(�0),λ1(�0),κ(�0) → 0 as �0 → 0. Note that
as z → 0, all the integrands in equations (4.28) and (4.29)

behave as z4−d. As a result one obtains divergent inte-
grals in the limit �0 → 0 in d ≥ 4. This implies that a
sensible continuum limit cannot be taken, which appears
to be consistent with the conclusions based on normal-
izability [44]. Note that for d = 2, 3, the inverse of λ0,1

and κ can be interpreted as the induced gauge coupling.
Despite we start with a dynamical gauge theory with no
kinetic term at UV z = 0, kinetic terms nevertheless are
generically generated along the flow.

C. Dirichlet boundary condition at infinity

Let us now consider the situation where that at infinity
we use the standard Dirichlet boundary condition, i.e.,
require

Aµ(z = 0, x) = Bµ(x). (4.30)

By the AdS/CFT dictionary, Bµ interpreted as an ex-
ternal source coupled to the conserved current jµ of the
CFT. As such it is important to note that Bµ is not dy-
namical and there is no gauge symmetry associated with
it.

We now integrate out AM to some hypersurface at z =
�, then the boundary action SB at z = � is obtained by
performing the path integral

e
iSB [AM ,�] =

� ÃM (z=�,x)=AM (x)

Ãµ(z=0,x)=Bµ(x)
[DÃM ] eiS0[ÃM ]

. (4.31)

where S0 is given by (4.2).
We will now set the gauge

Ãz = 0, z ∈ [0, �] (4.32)

by considering a gauge transformation λ(z, x) which sat-
isfies λ(z = 0) = 0 (so that Bµ is unchanged)

λ(z, x) =

� z

0
dz

�
Ãz(z

�
, x) . (4.33)

Such a gauge transformation now shifts the upper bound-
ary condition of (4.31) to

Ãµ(z = �) = Âµ ≡ Aµ − ∂µϕ, ϕ(x) =

� �

0
dz Ãz .

(4.34)
The path integral over Ãz now reduces to that over ϕ
which depends only on xµ. Thus the left hand side
of (4.31) can be written as

�
Dϕ(x) eSB [Âµ,�] . (4.35)

ϕ is precisely the “Goldstone” mode introduced in [20].
As emphasized there it is gapless and should be retained
in the low energy theory. This is manifest in (4.35) as
ϕ appears only with derivatives and we choose not to
integrate it out. Note that the new gauge potential Âµ
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introduced above, is gauge invariant, under a residual
gauge transformation where one also shifts the value of
ϕ, i.e.,

Aµ → Aµ − ∂µλ, ϕ → ϕ− λ . (4.36)

As a consequence SB [Âµ] satisfies

∂µ
δSB

δAµ
− δSB

δϕ
= 0 . (4.37)

Our earlier formal derivation of the flow equa-
tion (4.11) applies to SB [Âµ] inside the path integral for

ϕ; we only need to replace Aµ there by Âµ. In contrast

to (4.18), since now Âµ is gauge invariant we can intro-

duce mass type terms Â2
µ also for longitudinal and tem-

poral components. More explicitly, we can parameterize
SB [Âµ] as11

SB [Âµ, �] = Λ(�) +

�
ddk

(2π)d
√
−γ

�
Jµ(k, �) Âµ(−k)− 1

2
fT (k, �)A

T
i (k)Ai

T (−k)

�

−1

2

�
ddk

(2π)d
√
−γ

�
f0(k, �)Â0(k)Â

0(−k) + fL(k, �)g
iiÂL(k)ÂL(−k)

�

−1

2

�
ddk

(2π)d
√
−γ

�
f0L(Â0(k)Â

L(−k) + Â0(−k)ÂL(k))
�

(4.38)

Since Âµ is gauge invariant, now Jµ does not have to be
conserved. Plugging (4.38) into (4.11) we find a set of
flow equations, which we now proceed to study.

The flow equations for the transverse components J i
T

and fT are identical to those in the Neumann bound-
ary case (4.20)–(4.21) as their equations decouple from
that for longitudinal and temporal components . For the
temporal and longitudinal components we get a set of
coupled equations:

D�(
√
−γJ0) = −J0f0 − giiJ

Lf0L (4.39)

D�(
√
−γJL) = −JLfL + gttJ

0f0L (4.40)

and

D�(
√
−γgttf0) = −gttf2

0 + giif
2
0L + gttgiik2(4.41)

D�(
√
−γgiifL) = −giif2

L + gttf
2
0L − gttgiiω2(4.42)

D�(
√
−γf0L) = f0L(fL + f0)− gttgiiωk (4.43)

Note that if we were to consider a geometry which
preserves the Lorentz invariance along the boundary di-
rections, i.e., by having gtt = gii as in the case of
pure AdSd+1, then f0, fL, f0L collapse into two indepen-
dent functions whose equations decouple from each other.
Here we consider the more general situation as in most
example of interests (say finite temperature or chemi-
cal potential) Lorentz symmetry is broken. Finally the
flow of cosmological constant Λ is as before and is given
by (4.22).

We again work out the explicit expression for SB to
lowest order in small k and ω expansion. Note that
while the flow equations for the transverse components
are identical for the Dirichlet and Neumann boundary
conditions at infinity, care should be exercised in select-
ing their solutions. Setting k = ω = 0 in (4.20)–(4.43)

we find that the following solutions

f0L = 0,
√
−γ gtt f0(�) =

1

Qt
(4.44)

√
−γ gii fT (�) =

√
−γ gii fL(�) =

1

Qi
(4.45)

with

Qt ≡
� �

0

dz√
−g gzz gtt

, Qi =

� �

0

dz√
−g gzz gii

(4.46)

where we have chosen the constants of integration such
that Qt(�), Qi(�) → 0 as � → 0, the reason for which
will be clear momentrily. Recall that in the Neumann
case we had to choose fT = 0 at this order. One can
similarly solve for Jµ and Λ by integrating the respective
equations. Alternatively, one can obtain the effective ac-
tion directly by performing the path integral (4.31) in
the saddle point approximation (which is fact simpler).
One finds that12

SB [Âµ, �] =

� �
1

2Qt

�
Â0 −B0

�2
−

�

i

1

2Qi

�
Âi −Bi

�2
�

(4.47)
In the cut-off theory defined for z ≥ �, Aµ is interpreted
as the source for the boundary theory current jµ. As
for the scalar case discussed in Sec. II and Appendix A,
the effective action for the boundary theory is obtained
from the Legendre transform of SB and we find that the

12 The expressions below were obtained earlier [20] and in [18] in
the pure AdS limit.
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introduced above, is gauge invariant, under a residual
gauge transformation where one also shifts the value of
ϕ, i.e.,

Aµ → Aµ − ∂µλ, ϕ → ϕ− λ . (4.36)

As a consequence SB [Âµ] satisfies
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0(−k) + fL(k, �)g
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Since Âµ is gauge invariant, now Jµ does not have to be
conserved. Plugging (4.38) into (4.11) we find a set of
flow equations, which we now proceed to study.
The flow equations for the transverse components J i

T
and fT are identical to those in the Neumann bound-
ary case (4.20)–(4.21) as their equations decouple from
that for longitudinal and temporal components . For the
temporal and longitudinal components we get a set of
coupled equations:
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Note that if we were to consider a geometry which
preserves the Lorentz invariance along the boundary di-
rections, i.e., by having gtt = gii as in the case of
pure AdSd+1, then f0, fL, f0L collapse into two indepen-
dent functions whose equations decouple from each other.
Here we consider the more general situation as in most
example of interests (say finite temperature or chemi-
cal potential) Lorentz symmetry is broken. Finally the
flow of cosmological constant Λ is as before and is given
by (4.22).
We again work out the explicit expression for SB to

lowest order in small k and ω expansion. Note that
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where we have chosen the constants of integration such
that Qt(�), Qi(�) → 0 as � → 0, the reason for which
will be clear momentrily. Recall that in the Neumann
case we had to choose fT = 0 at this order. One can
similarly solve for Jµ and Λ by integrating the respective
equations. Alternatively, one can obtain the effective ac-
tion directly by performing the path integral (4.31) in
the saddle point approximation (which is fact simpler).
One finds that12
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In the cut-off theory defined for z ≥ �, Aµ is interpreted
as the source for the boundary theory current jµ. As
for the scalar case discussed in Sec. II and Appendix A,
the effective action for the boundary theory is obtained
from the Legendre transform of SB and we find that the

12 The expressions below were obtained earlier [20] and in [18] in
the pure AdS limit.
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to (4.18), since now Âµ is gauge invariant we can intro-

duce mass type terms Â2
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Since Âµ is gauge invariant, now Jµ does not have to be
conserved. Plugging (4.38) into (4.11) we find a set of
flow equations, which we now proceed to study.
The flow equations for the transverse components J i

T
and fT are identical to those in the Neumann bound-
ary case (4.20)–(4.21) as their equations decouple from
that for longitudinal and temporal components . For the
temporal and longitudinal components we get a set of
coupled equations:
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Note that if we were to consider a geometry which
preserves the Lorentz invariance along the boundary di-
rections, i.e., by having gtt = gii as in the case of
pure AdSd+1, then f0, fL, f0L collapse into two indepen-
dent functions whose equations decouple from each other.
Here we consider the more general situation as in most
example of interests (say finite temperature or chemi-
cal potential) Lorentz symmetry is broken. Finally the
flow of cosmological constant Λ is as before and is given
by (4.22).
We again work out the explicit expression for SB to

lowest order in small k and ω expansion. Note that
while the flow equations for the transverse components
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ing their solutions. Setting k = ω = 0 in (4.20)–(4.43)
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where we have chosen the constants of integration such
that Qt(�), Qi(�) → 0 as � → 0, the reason for which
will be clear momentrily. Recall that in the Neumann
case we had to choose fT = 0 at this order. One can
similarly solve for Jµ and Λ by integrating the respective
equations. Alternatively, one can obtain the effective ac-
tion directly by performing the path integral (4.31) in
the saddle point approximation (which is fact simpler).
One finds that12
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In the cut-off theory defined for z ≥ �, Aµ is interpreted
as the source for the boundary theory current jµ. As
for the scalar case discussed in Sec. II and Appendix A,
the effective action for the boundary theory is obtained
from the Legendre transform of SB and we find that the

12 The expressions below were obtained earlier [20] and in [18] in
the pure AdS limit.

  Working in a translationally invariant boundary geometry (such as a planar 
black hole), the equations separate into longitudinal and transverse sectors

12

immediately write down the flow equations for transverse
components from (2.17)–(2.18),

D�

�√
−γ J

i
T (k, �)

�
= −J

i
T (k, �) fT (k, �) (4.20)

D�

�
g
ii√−γ fT (k, �)

�
= g

ii
�
−f

2
T (k, �) + kµk

µ
�
(4.21)

where D� was introduced in (2.19). The analysis of these
equations is similar to the case of the scalar discussed in
Sec. II C. The equation for cosmological constant Λ is

D�Λ =
1

2

�
ddk

(2π)d
J
µ(k, �) Jµ(−k, �) . (4.22)

Plugging (4.18) into (4.11) one also finds the following
equations for the longitudinal components

D�

�√
−γ J

0(k, �)
�
= −kµk

µ
hL(k, �) J

0 (4.23)

D�

�
g
tt
g
ii √−γ hL(k, �)

�
= g

tt
g
ii
�
1− h

2
L(k, �) kµk

µ
�

(4.24)

where in writing down (4.23) we have used (4.19).
A version of equations (4.21) and (4.24) were de-

rived before [26], where these equations arose as the flow
equations of longitudinal and transverse conductivities.
This connection also helps to express solutions of (4.20)–
(4.24) in terms of solutions of classical equations of mo-
tion (4.7)–(4.8)

fT = −gii
Πi

T

AT
i

, J
i
T =

1
√
−γAT

i

(4.25)

hL =
gttgii

iω

ΠL

√
−γ EL

, J
0 =

1√
−γ EL

.(4.26)

Let us look at the lowest order expression for SB in
small ω and k expansion. For the transverse flow equa-
tion (4.21), in the limit ω = k = 0, one should take
fT = 0. This follows from the fact that one requires
fT (�) → 0 as � → 0 (to keep the fixed point theory
free of the A2

T term). As a result we conclude that
fT ∝ O(k2,ω2). Now writing

√
−γgiifT = −λ0 ω

2 + λ1 k
2 + · · · (4.27)

we find

λ0(�) = λ0(�0) +

� �

�0

dz
√
−gg

ii
g
tt
,

λ1(�) = λ1(�0) +

� �

�0

dz
√
−g(gii)2 (4.28)

Similarly consider (4.24) with kµ = 0, we find for κ ≡
gttgii

√
−γ hL

κ(�) = κ(�0) +

� �

�0

dz
√
−gg

tt
g
ii (4.29)

We should choose boundary conditions such that the co-
efficients λ0(�0),λ1(�0),κ(�0) → 0 as �0 → 0. Note that
as z → 0, all the integrands in equations (4.28) and (4.29)

behave as z4−d. As a result one obtains divergent inte-
grals in the limit �0 → 0 in d ≥ 4. This implies that a
sensible continuum limit cannot be taken, which appears
to be consistent with the conclusions based on normal-
izability [44]. Note that for d = 2, 3, the inverse of λ0,1

and κ can be interpreted as the induced gauge coupling.
Despite we start with a dynamical gauge theory with no
kinetic term at UV z = 0, kinetic terms nevertheless are
generically generated along the flow.

C. Dirichlet boundary condition at infinity

Let us now consider the situation where that at infinity
we use the standard Dirichlet boundary condition, i.e.,
require

Aµ(z = 0, x) = Bµ(x). (4.30)

By the AdS/CFT dictionary, Bµ interpreted as an ex-
ternal source coupled to the conserved current jµ of the
CFT. As such it is important to note that Bµ is not dy-
namical and there is no gauge symmetry associated with
it.

We now integrate out AM to some hypersurface at z =
�, then the boundary action SB at z = � is obtained by
performing the path integral

e
iSB [AM ,�] =

� ÃM (z=�,x)=AM (x)

Ãµ(z=0,x)=Bµ(x)
[DÃM ] eiS0[ÃM ]

. (4.31)

where S0 is given by (4.2).
We will now set the gauge

Ãz = 0, z ∈ [0, �] (4.32)

by considering a gauge transformation λ(z, x) which sat-
isfies λ(z = 0) = 0 (so that Bµ is unchanged)

λ(z, x) =

� z

0
dz

�
Ãz(z

�
, x) . (4.33)

Such a gauge transformation now shifts the upper bound-
ary condition of (4.31) to

Ãµ(z = �) = Âµ ≡ Aµ − ∂µϕ, ϕ(x) =

� �

0
dz Ãz .

(4.34)
The path integral over Ãz now reduces to that over ϕ
which depends only on xµ. Thus the left hand side
of (4.31) can be written as

�
Dϕ(x) eSB [Âµ,�] . (4.35)

ϕ is precisely the “Goldstone” mode introduced in [20].
As emphasized there it is gapless and should be retained
in the low energy theory. This is manifest in (4.35) as
ϕ appears only with derivatives and we choose not to
integrate it out. Note that the new gauge potential Âµ
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immediately write down the flow equations for transverse
components from (2.17)–(2.18),
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where D� was introduced in (2.19). The analysis of these
equations is similar to the case of the scalar discussed in
Sec. II C. The equation for cosmological constant Λ is

D�Λ =
1

2

�
ddk

(2π)d
J
µ(k, �) Jµ(−k, �) . (4.22)

Plugging (4.18) into (4.11) one also finds the following
equations for the longitudinal components
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�
= −kµk

µ
hL(k, �) J

0 (4.23)
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ii √−γ hL(k, �)
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1− h
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L(k, �) kµk

µ
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where in writing down (4.23) we have used (4.19).
A version of equations (4.21) and (4.24) were de-

rived before [26], where these equations arose as the flow
equations of longitudinal and transverse conductivities.
This connection also helps to express solutions of (4.20)–
(4.24) in terms of solutions of classical equations of mo-
tion (4.7)–(4.8)

fT = −gii
Πi
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AT
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, J
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T =
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−γAT
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(4.25)

hL =
gttgii

iω

ΠL

√
−γ EL

, J
0 =

1√
−γ EL

.(4.26)

Let us look at the lowest order expression for SB in
small ω and k expansion. For the transverse flow equa-
tion (4.21), in the limit ω = k = 0, one should take
fT = 0. This follows from the fact that one requires
fT (�) → 0 as � → 0 (to keep the fixed point theory
free of the A2

T term). As a result we conclude that
fT ∝ O(k2,ω2). Now writing

√
−γgiifT = −λ0 ω

2 + λ1 k
2 + · · · (4.27)

we find

λ0(�) = λ0(�0) +

� �

�0

dz
√
−gg

ii
g
tt
,

λ1(�) = λ1(�0) +

� �

�0

dz
√
−g(gii)2 (4.28)

Similarly consider (4.24) with kµ = 0, we find for κ ≡
gttgii

√
−γ hL

κ(�) = κ(�0) +

� �

�0

dz
√
−gg

tt
g
ii (4.29)

We should choose boundary conditions such that the co-
efficients λ0(�0),λ1(�0),κ(�0) → 0 as �0 → 0. Note that
as z → 0, all the integrands in equations (4.28) and (4.29)

behave as z4−d. As a result one obtains divergent inte-
grals in the limit �0 → 0 in d ≥ 4. This implies that a
sensible continuum limit cannot be taken, which appears
to be consistent with the conclusions based on normal-
izability [44]. Note that for d = 2, 3, the inverse of λ0,1

and κ can be interpreted as the induced gauge coupling.
Despite we start with a dynamical gauge theory with no
kinetic term at UV z = 0, kinetic terms nevertheless are
generically generated along the flow.

C. Dirichlet boundary condition at infinity

Let us now consider the situation where that at infinity
we use the standard Dirichlet boundary condition, i.e.,
require

Aµ(z = 0, x) = Bµ(x). (4.30)

By the AdS/CFT dictionary, Bµ interpreted as an ex-
ternal source coupled to the conserved current jµ of the
CFT. As such it is important to note that Bµ is not dy-
namical and there is no gauge symmetry associated with
it.

We now integrate out AM to some hypersurface at z =
�, then the boundary action SB at z = � is obtained by
performing the path integral

e
iSB [AM ,�] =

� ÃM (z=�,x)=AM (x)

Ãµ(z=0,x)=Bµ(x)
[DÃM ] eiS0[ÃM ]

. (4.31)

where S0 is given by (4.2).
We will now set the gauge

Ãz = 0, z ∈ [0, �] (4.32)

by considering a gauge transformation λ(z, x) which sat-
isfies λ(z = 0) = 0 (so that Bµ is unchanged)

λ(z, x) =

� z

0
dz

�
Ãz(z

�
, x) . (4.33)

Such a gauge transformation now shifts the upper bound-
ary condition of (4.31) to

Ãµ(z = �) = Âµ ≡ Aµ − ∂µϕ, ϕ(x) =

� �

0
dz Ãz .

(4.34)
The path integral over Ãz now reduces to that over ϕ
which depends only on xµ. Thus the left hand side
of (4.31) can be written as

�
Dϕ(x) eSB [Âµ,�] . (4.35)

ϕ is precisely the “Goldstone” mode introduced in [20].
As emphasized there it is gapless and should be retained
in the low energy theory. This is manifest in (4.35) as
ϕ appears only with derivatives and we choose not to
integrate it out. Note that the new gauge potential Âµ
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introduced above, is gauge invariant, under a residual
gauge transformation where one also shifts the value of
ϕ, i.e.,

Aµ → Aµ − ∂µλ, ϕ → ϕ− λ . (4.36)

As a consequence SB [Âµ] satisfies

∂µ
δSB

δAµ
− δSB

δϕ
= 0 . (4.37)

Our earlier formal derivation of the flow equa-
tion (4.11) applies to SB [Âµ] inside the path integral for

ϕ; we only need to replace Aµ there by Âµ. In contrast

to (4.18), since now Âµ is gauge invariant we can intro-

duce mass type terms Â2
µ also for longitudinal and tem-

poral components. More explicitly, we can parameterize
SB [Âµ] as11

SB [Âµ, �] = Λ(�) +

�
ddk

(2π)d
√
−γ

�
Jµ(k, �) Âµ(−k)− 1

2
fT (k, �)A

T
i (k)Ai

T (−k)

�

−1

2

�
ddk

(2π)d
√
−γ

�
f0(k, �)Â0(k)Â

0(−k) + fL(k, �)g
iiÂL(k)ÂL(−k)

�

−1

2

�
ddk

(2π)d
√
−γ

�
f0L(Â0(k)Â

L(−k) + Â0(−k)ÂL(k))
�

(4.38)

Since Âµ is gauge invariant, now Jµ does not have to be
conserved. Plugging (4.38) into (4.11) we find a set of
flow equations, which we now proceed to study.
The flow equations for the transverse components J i

T
and fT are identical to those in the Neumann bound-
ary case (4.20)–(4.21) as their equations decouple from
that for longitudinal and temporal components . For the
temporal and longitudinal components we get a set of
coupled equations:

D�(
√
−γJ0) = −J0f0 − giiJ

Lf0L (4.39)

D�(
√
−γJL) = −JLfL + gttJ

0f0L (4.40)

and

D�(
√
−γgttf0) = −gttf2

0 + giif
2
0L + gttgiik2(4.41)

D�(
√
−γgiifL) = −giif2

L + gttf
2
0L − gttgiiω2(4.42)

D�(
√
−γf0L) = f0L(fL + f0)− gttgiiωk (4.43)

Note that if we were to consider a geometry which
preserves the Lorentz invariance along the boundary di-
rections, i.e., by having gtt = gii as in the case of
pure AdSd+1, then f0, fL, f0L collapse into two indepen-
dent functions whose equations decouple from each other.
Here we consider the more general situation as in most
example of interests (say finite temperature or chemi-
cal potential) Lorentz symmetry is broken. Finally the
flow of cosmological constant Λ is as before and is given
by (4.22).
We again work out the explicit expression for SB to

lowest order in small k and ω expansion. Note that
while the flow equations for the transverse components
are identical for the Dirichlet and Neumann boundary
conditions at infinity, care should be exercised in select-
ing their solutions. Setting k = ω = 0 in (4.20)–(4.43)

we find that the following solutions

f0L = 0,
√
−γ gtt f0(�) =

1

Qt
(4.44)

√
−γ gii fT (�) =

√
−γ gii fL(�) =

1

Qi
(4.45)

with

Qt ≡
� �

0

dz√
−g gzz gtt

, Qi =

� �

0

dz√
−g gzz gii

(4.46)

where we have chosen the constants of integration such
that Qt(�), Qi(�) → 0 as � → 0, the reason for which
will be clear momentrily. Recall that in the Neumann
case we had to choose fT = 0 at this order. One can
similarly solve for Jµ and Λ by integrating the respective
equations. Alternatively, one can obtain the effective ac-
tion directly by performing the path integral (4.31) in
the saddle point approximation (which is fact simpler).
One finds that12

SB [Âµ, �] =

� �
1

2Qt

�
Â0 −B0

�2
−
�

i

1

2Qi

�
Âi −Bi

�2
�

(4.47)
In the cut-off theory defined for z ≥ �, Aµ is interpreted
as the source for the boundary theory current jµ. As
for the scalar case discussed in Sec. II and Appendix A,
the effective action for the boundary theory is obtained
from the Legendre transform of SB and we find that the

12 The expressions below were obtained earlier [20] and in [18] in
the pure AdS limit.

 Legendre transformation of this boundary actions gives us the CFT 
effective action 
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corresponding boundary theory effective action is

IUV =

� �
−1

2
Qt(j

0
)
2
+

1

2

�

i

Qi(j
i
)
2 − j

µ
(Bµ + ∂µϕ)

�

(4.48)

which has a well defined derivative expansion. Note that

integrating out ϕ now imposes the condition that jµ is

conserved. One can also now understand our choice of

integration constants for the Qs in (4.44) and (4.45) –

these come from the expectation that the double-trace

deformations should vanish as we take �-surface to the

boundary since we start at the fixed point without any

double-trace deformation.

If one chooses to integrate out ϕ in (4.47), then the

resulting S̃B is given by (for simplicity we set Bµ = 0

below and EL was introduced in (4.13))

S̃B [Aµ, �] = −
�

ddk

(2π)d

�
1

2

1

Qiω2 −Qtk
2
(E

L
)
2

+

�

i

1

2Qi
(A

T
i )

2

�
(4.49)

and is manifestly non-local. Note that S̃B is manifestly

gauge invariant and satisfy

∂µ
δS̃B

δAµ
= 0 . (4.50)

Note that (4.49) has the form of (4.18). Indeed had we

decided to integrate out ϕ from the beginning, the re-

sulting S̃B [Aµ, �] would be gauge invariant under Aµ →
Aµ − ∂µλ and again be expanded as in (4.18) with coef-

ficients satisfying (4.23) and (4.24).

To conclude the discussion let us make a quick compar-

ison of the Dirichlet and Neumann boundary conditions.

In the Dirichlet case, apart than the Wilson line mode ϕ,
there are no other gapless modes. This is natural since

we are considering a gauge field on a spacetime with an

infrared cut-off (and a UV boundary condition), and the

vector spectrum therefore has a mass gap as in a con-

fining theory. In contrast in the Neumann case, one has

dynamical gauge field which itself is gapless and should

be kept in the low energy effective action. This is re-

flected in the fact that when we do a Legendre transform

of (4.18), we find non-local behavior due to the behavior

fT ∝ O(k2,ω2) (similar with (FL
0i)

2 term). The physical

interpretation of these non-local terms is the same as the

semi-holographic story described in Sec. III.

1. Diffusion on the stretched horizon

As a simple application of the effective action (4.47)

we obtained by integrating out the bulk gauge field in

the region z ∈ (0, �), we derive the diffusion equation for

a conserved current at a non-zero temperature. As usual

the thermal background is provided by working in a static

black hole geometry with a non-degenerate horizon. The

discussion follows the one that was recently given in [20],

which we repeat here to highlight the role played by the

effective action SB in this baby version of the refined

membrane paradigm.

In the absence of external sources, the low energy ef-

fective action (4.47) can be written in momentum space

as

SB [Âµ, �] = −1

2

� �
1

Qi
Âi(k)Âi(−k)− 1

Qt
Â0(k)Â0(−k)

�

(4.51)

The boundary condition (4.6) then becomes

Π0
=

Â0

Qt
, Πi

= − Âi

Qi
(4.52)

The conservation equation for the momentum Π, (4.7),
then gives

ω
Â0

Qt
= −k

Âi

Qi
(4.53)

We need to supplement this data with a regularity condi-

tion at the horizon; this is essentially the infalling bound-

ary condition and for vectors relates the conjugate mo-

mentum to the electric field a la Ohm’s Law [21, 22] (see

e.g. Sec. IIA of [26] for a review):

Πi
= σFti = −σ (ik Â0 + iω Âi) (4.54)

where σ is the conductivity. Combining (4.53) and (4.54)

we then find that for

Qiω
2 � Qtk

2
(4.55)

the diffusive dispersion relation:

ω = −iD k
2
, D = σQt . (4.56)

Note that in the above derivation the use of the effec-
tive action is essential. One would not be able to find

the diffusion mode using the horizon boundary condition

alone.

For a static black hole geometry, the metric functions

gtt, gzz → 0 with the product gttgzz remaining con-

stant. Then as � approaches the horizon of a black hole,

from (4.44) and (4.45), Qt remains finite, while Qi ap-

proaches infinity logarithmically (for a non-degenerate

horizon). Thus we cannot put our cut-off surface too

close to the horizon as (4.55) will eventually break down.

Note that as Qi → ∞, the coefficients before A2
i terms

in (4.51) vanish and higher order term in derivative ex-

pansion will become important. In such a regime the

the effective action obtained from the Legendre trans-

form of (4.51) will be non-local. It would be good to

understand the implication of this better.

 Note that the Goldstone mode’s presence in SB  keeps the action local. If 
we integrate it out, we would end up with a non-local action

S̃B [Aµ, �] = −
�

ddk

(2π)d

�
1

2

1

Qiω2 −Qtk2
(EL)2 +

�

i

1

2Qi
(AT

i )
2

�



Diffusion on the horizon

 From the effective action for the vector fields we can derive the diffusion 
equation for a conserved current in a black hole background.

 Effective action + in-falling boundary condition on the horizon leads to 
diffusive modes with dispersion:
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and is manifestly non-local. Note that S̃B is manifestly

gauge invariant and satisfy

∂µ
δS̃B

δAµ
= 0 . (4.50)

Note that (4.49) has the form of (4.18). Indeed had we

decided to integrate out ϕ from the beginning, the re-

sulting S̃B [Aµ, �] would be gauge invariant under Aµ →
Aµ − ∂µλ and again be expanded as in (4.18) with coef-

ficients satisfying (4.23) and (4.24).

To conclude the discussion let us make a quick compar-

ison of the Dirichlet and Neumann boundary conditions.

In the Dirichlet case, apart than the Wilson line mode ϕ,
there are no other gapless modes. This is natural since

we are considering a gauge field on a spacetime with an

infrared cut-off (and a UV boundary condition), and the

vector spectrum therefore has a mass gap as in a con-

fining theory. In contrast in the Neumann case, one has

dynamical gauge field which itself is gapless and should

be kept in the low energy effective action. This is re-

flected in the fact that when we do a Legendre transform

of (4.18), we find non-local behavior due to the behavior

fT ∝ O(k2,ω2) (similar with (FL
0i)

2 term). The physical

interpretation of these non-local terms is the same as the

semi-holographic story described in Sec. III.

1. Diffusion on the stretched horizon

As a simple application of the effective action (4.47)

we obtained by integrating out the bulk gauge field in

the region z ∈ (0, �), we derive the diffusion equation for

a conserved current at a non-zero temperature. As usual

the thermal background is provided by working in a static

black hole geometry with a non-degenerate horizon. The

discussion follows the one that was recently given in [20],

which we repeat here to highlight the role played by the

effective action SB in this baby version of the refined

membrane paradigm.

In the absence of external sources, the low energy ef-

fective action (4.47) can be written in momentum space

as

SB [Âµ, �] = −1

2
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Âi(k)Âi(−k)− 1
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(4.51)

The boundary condition (4.6) then becomes

Π0
=

Â0

Qt
, Πi

= − Âi

Qi
(4.52)

The conservation equation for the momentum Π, (4.7),
then gives

ω
Â0

Qt
= −k

Âi

Qi
(4.53)

We need to supplement this data with a regularity condi-

tion at the horizon; this is essentially the infalling bound-

ary condition and for vectors relates the conjugate mo-

mentum to the electric field a la Ohm’s Law [21, 22] (see

e.g. Sec. IIA of [26] for a review):

Πi
= σFti = −σ (ik Â0 + iω Âi) (4.54)

where σ is the conductivity. Combining (4.53) and (4.54)

we then find that for

Qiω
2 � Qtk

2
(4.55)

the diffusive dispersion relation:

ω = −iD k
2
, D = σQt . (4.56)

Note that in the above derivation the use of the effec-
tive action is essential. One would not be able to find

the diffusion mode using the horizon boundary condition

alone.

For a static black hole geometry, the metric functions

gtt, gzz → 0 with the product gttgzz remaining con-

stant. Then as � approaches the horizon of a black hole,

from (4.44) and (4.45), Qt remains finite, while Qi ap-

proaches infinity logarithmically (for a non-degenerate

horizon). Thus we cannot put our cut-off surface too

close to the horizon as (4.55) will eventually break down.

Note that as Qi → ∞, the coefficients before A2
i terms

in (4.51) vanish and higher order term in derivative ex-

pansion will become important. In such a regime the

the effective action obtained from the Legendre trans-

form of (4.51) will be non-local. It would be good to

understand the implication of this better.

 This derivation of diffusion from the effective action by integrating out 
modes all the way down to the horizon is a clean way to derive the black 
hole membrane paradigm.
 The result here complements the previous analysis of understanding how 

to relate the boundary fluid dynamics to the effective action on the 
stretched horizon.

Bredberg, Keeler, Lysov, Strominger

Iqbal, Liu

Nickel, Son
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Looking ahead



Summary

 A general prescription for a Wilsonian approach to the holographic 
renormalization group.
 We explicitly integrate out regions of the bulk spacetime and use it to 

induce an effective action on the cut-off surface. 

 At the level of classical gravity and for probe fields (scalars, vectors):
 Obtain the beta-function equations for multi-trace operators
 Make contact with the semi-holographic models. 
 Provide a clean derivation of diffusion on the stretched horizon a la the 

black hole membrane paradigm.



Open issues

 What about dynamical gravity?
 would like to see an effective action for the hydrodynamic modes which 

arise from integrating out the degrees of freedom between the boundary 
and the horizon.
 construct effective actions for low energy modes in extremal black hole 

backgrounds.

 What is the role of alternative quantization?
 seems to provide a simpler way to understand the process of integrating 

out the geometry.
 retains the light degrees of freedom.
 perhaps a useful tool to understand induced gravity?


