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Geomebrization of effective actions

@ Can one provide a more conceptual underpinning for the AdS/CFT
correspondence a la Wilson?

@ Necessary to understand how to generalize holographic ideas.

# Crucial to gain insight into how quantum gravity works.

@ Provide an understanding for origin of local physics in the bulk.

+ Allow identification of the effective degrees of freedom and their
interactions for intrinsically strongly coupled systems.
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The Scale Radius duati,&v

® One entry in the AdS/CFT dictionary:

& Energy scale of the field theory maps to the radial coordinate of AdS.
+ — leads to the UV/IR duality

« Boundary of AdS: UV of field theory
« Interior of AdS: IR region of field theory Susskind, Witten

@ Naively: Integrating out energy shells in the boundary field theory should
therefore map to integrating out a part of the bulk geometry.
@ This is at the heart of the Holographic Renormalization Group.

de Boer, Verlinde, Verlinde

@ We are going to attempt to do something similar and derive a flow
equation, albeit with some difterences.




A to%eep&uat F:'wmm

The sliding

Microscopic theory

y .- o

IR region

\// CUt_Off
surface

scales

energy scale

Asymptotic geometry

Integrate out

35 el

~1

88
o



A few caveats

8 Any given process in the field theory involves excitation at all scales in the

bulk:

& clear for example in the fluid/gravity correspondence, where one describes
the low energy effective theory in terms of an asymptotically AdS
spacetime.

« J some limitations to the UV/IR duality: relativistic beaming Hubeny

® The map between the cut-off scale in field theory and the bulk radial
position is not terribly transparent

<« this is key: we need to unravel this map to understand bulk locality:

& c.g., make precise the statement that a cut-off bulk AdS is dual to CFT
coupled to induced gravity

« multi-trace operators play an important role




[Geame&ric RGr: the Proposalj

@ Consider an effective field theory defined by a path integral:

7%= /Aycp exp [i Loy [®, A]] L@, A] = Io[®] + Iyy [®, Al

T

® The action Iyy obeys an renormalization group flow equation.

@ In the dual gravity theory we consider a bulk action:

S= [ d"a V=g L(6.0n6) + Sulo.€
Z>€




The prc}poso&

@ The bulk boundary term Sp is identified with Iyy

# directly when we think of alternate quantization of boundary CFT which
is allowed in a small range of conformal dimensions of dual operator.

@ up to a Legendre transformation when we work with the standard
quantization.

@ Care should be exercised in interpreting Sg:
« all regions of the bulk contribute to a given physical process.

4 non-local terms induced in Sp due to gapless modes in the geometry:.

@ We'll derive a flow equation for Sple}l
< the flow is driven by the ‘bulk Hamiltonian’

«# equation is the WKB limit of the equation proposed in Heemskerk, Polchinski
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X an F:»i.@. 1: Scalars

@ Let us consider a bulk scalar field described by an action
S = / dte /=g L(¢,0md) + Se[d, €]
zZ>€

@ The cut-off surface z = ¢ being arbitrary, the on-shell action should be
unchanged as we move the surface:

0= —/ dx \/—g L+0.SB[o, e]—l—/ dlx 055

5" e sy

8 This can be rewritten in terms of a Hamiltonian flow

G = _/ s (ML — =55 = —/d%?—[

=€




Some salient Fﬁoim&s

@ The flow equation for Sp is a functional equation and provides a simple
way to encode the evolution of the couplings.

@ Important that one not impose the bulk equations of motion in evaluating
this flow equation.

@ Thus Splel only encodes information about the part of the geometry that
has been integrated out.

@ It has no information about the interior of the geometry:

@ This is the main difference from the viewpoint of the Holographic
Renormalization group. de Boer, Verlinde, Verlinde

@ We will also see momentarily that Sple} contains multi-trace operators in
addition to single-trace even in the planar limit.

@ Makes this quantity conceptually different from the counter-term actions
written down for holographic renormalization. Skenderis, Papadimitriou,....




j

| Flow equations for the saatarj

@ To see some more important features consider a free scalar in the bulk.

d d
Solecd] = MO+ [ o5 VI 90(—K) = 5 [ 55 VA S (0,0 RIS

@ The flow equations for the ‘couplings’ in Sp are:

L F s
DA = / g7 (k. T~k ).

D. (V=7 J(k,€)) = —=J(k,e) f(k,e), '
“rttbe.
R Ly




A note ol convenbions

@ Bulk metric:
ds® = gMNddexN = —gudt® + g;;d2° + g,,d2°

® On the hypersurface of interest:

Y dat dz” = —gu(e)dt” + gi(€)dT”

VI =V
8 Momenta conventions:
k —w, k), d%k = dw d*k;,

Z k‘ k'uk'u _gttw2 1L gme




Interpreting flow equations

@ The flow equations are simply related to the classical equations of motion.
@ One can check that f and 7 can be mapped to a classical solution via:

@ As such there is no simplification if we want to solve for the evolution of
the couplings for all values of momenta.

@ However, as in the case of RG, these equations are immensely helpful in
extracting the low energy behaviour.

@ The evolution equation for f was derived as a bulk extension of a
boundary two-point function to understand the change in transport
coefhicients between the boundary and a bulk black hole horizon.

lqbal, Liu




Double-trace flow

@ To appreciate the evolution of f consider pure AdS..:

d d?

Eaef:—f2—AA_—|—df A:§-|-V, V= Z—I—mQ, A_=d—-A

@ In terms of f = f + A_ one derives the beta-function equation for double
trace couplings

€. f=—f*+2uf
® / is the renormalized double-trace coupling. In the continuum limit
either:

& CFT with alternative quantization (A_) perturbed by a double-trace

& Standard quantization with double trace deformation

1 1
W[O_] = / (J_O_ . 5/{/_02_) W_|_[O_|_] = / <J_|_O_|_ i §Ii_|_0_2|_>
. . 1
el = me, Je) = J_e=, J+:—R—_a A R




Double-trace flow

® The fixed point of the double-trace flow correspond to the standard and
alternative quantization respectively.

& Standard quantization is the IR fixed point

« Alternative quantization is the UV fixed point

2v A
- K_E€ J G
= Tilee) e

@ The double trace operators are generated along the flow even if we start
from the undeformed theory.

@ This fact plays an important role in understanding eftfective description of
CF'Ts at non-zero density and zero temperature.
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Semiwhomgro\?kw models

@ Investigations of retarded Green’s functions of probe fields in extremal
black hole backgrounds have revealed interesting behaviour: il

# scalars tend to want to condense in the near horizon  Hartnoll, Herzog, Horowitz

« fermionic Green’s functions reveal characteristics of Fermi surface, with
non-Fermi liquid behaviour Faulkner, Liu, McGreevy, Vegh

@ In all cases the interesting physics seems to be due to the infinite throat of
extremal black holes, resulting in an AdS, geometry in the near horizon.

Kunduri, Lucietti, Reall

@ The effective description of these systems can be captured in terms of
semi-holographic models.
® These models take seriously the AdS, part of the spacetime and imagine

the CFT degrees of freedom coupled to near-horizon modes.
I:aunmer, Polchinski




Semiwhomgro\?kw models

AdS; region

Cross-over
region

S

Asymptotic
AdSq.. region

>




Semawkotographw models

@ By analyzing the behaviour of double-trace operators one can derive the
semi-holographic description from the effective action S.
@ Integrate the flow equation & relate the double-trace deformation of the

UV/boundary theory to that of the IR/AdS, theory:.

b_|_ — Ry a4+
b_ — Ry a_—

R —

@ For standard quantization of the UV theory, and the IR physics is
governed by the coefhicients 4. since Ky — 0.

@ Scalar instability, Fermi surfaces, etc., are related to zeros of «. which
occur at some special values of momenta.

@ In the vicinity of these points in momentum space,

/{'/I:CQ)Q—I—...




Semiwhotographw models

. . . 1 1
® The effective action for AdS, is rendered non-local - / ot

@ Locality maybe regained by:

« working in terms of the alternative quantization (if admissible) % / k02

« realizing that there is a gapless mode in the spacetime and retain this
mode in the effective action:

<6f¢0 ‘I’+> |

@ The gapless mode ensures locality of the low energy eftective action. One

simply has
1/ C2 (5t¢0)2+/¢0‘1’+

1

“ k1 &

S:SO(z>e)—|—Sct(z:e)+/ >

Z=¢€

2
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Exampte 2: Vectors

@ Let us consider a bulk Maxwell field with action
S = Solz > €, Ap| + SB|Awm, €]

® The flow equation:

1 (553 553 1 5SB
€ A =l dd . N - v N ]/FMV dd —AZ o
0SB Ay, €] /z_e A [27 Ji S oA, L ] +/ 5’:6“514“

@ In order to understand the flow we need to sort out issues relating to
gauge symmetries. ITwo possibilities:

« Dirichlet boundary condition for the Maxwell field

« Neumann boundary condition (admissible in d=3 and d=4).




Veckors with Dirichlel be

@ The Dirichlet bc is the conventional bc for vectors in AAS/CFT at the
boundary. We simply fix the boundary value of the gauge field

A,(z = 0,2) = B,(a)

@ Perform the bulk path integral integrating out modes living between
boundary and the cut-oft surface.

~

' A (z=e,x)=Ap (2) v ' ~
6Z;S'B[AA]W,E] e / [DAM] €ZSO[AM]
A,,(z=0,2)=B,(x)

@ Choose radial gauge and incorporate the Goldstone mode
Nickel, Son

~

flu = A, — 0., o(x) = /0 dz A,

@ These gauge invariant fields are useful to parameterize the boundary
action Sp




Flow equations for vectors

@ One can write down a general form of the boundary action

d'k
(2m)¢

¥ A ) - A
_% / (;ZW];d V= (fo(k,e)Ao(k)AO(_k) o fL<k7€)9mAL(k)AL(_k))

Saldud = MO+ [ 55V (P06 Au(k) = § frls) AT (R (D))

~5 | G v [forl o) AH (=) + Aa(—k) A1)

@ Working in a translationally invariant boundary geometry (such as a planar
black hole), the equations separate into longitudinal and transverse sectors

De (\/ = J%(ka 6)) =N _J%(ka 6) fT(ka 6) DG(\/ _’VJO) T _JOfO T gz’iJLfOL
D (¢"V=7 fr(k.e) = g (~f7(koe) T kb)) DV=ATT) = =T f + 9wl for
De(v=79"fo) = —g"f5 + giifor + 9" 9"k 1%

De(\/——’}/gmf[,) Sty _gzszZ/ - gttf(?L 'l gtthZWQ DGA X 5/ (27T)d Ju(k7€) '],u(_k7€)

D(v—7for) = for(fr + fo) — g"g"wk




Flow equations for vectors

@ It is interesting to examine the low frequency behaviour of the couplings.
@ Explicit solutions for the couplings can be obtained in terms of known
functions of metric functions Q. and Q;

SB[AM,E] :/ {Qth (AO_BO)2_221Q7; (Ai_Bi)Q

@ Legendre transformation of this boundary actions gives us the CFT
effective action

va—/<—Qt T ZQz +5u90)>

@ Note that the Goldstone mode’s presence in S keeps the action local. If
we integrate it out, we would end up with a non-local action

- d°k |1 1 1
SB [A,LH 6] = _/ (27T)d 5 Qz’WQ i thQ (EL)2 o Z 20; (A;,F)Q




Diffusion on the horizon

@ From the effective action for the vector fields we can derive the diffusion
equation for a conserved current in a black hole background.

@ Effective action + in-falling boundary condition on the horizon leads to
diffusive modes with dispersion:

w:—kaz, D = o Q)

@ This derivation of diffusion from the effective action by integrating out
modes all the way down to the horizon is a clean way to derive the black
hole membrane paradigm.

@ The result here complements the previous analysis of understanding how
to relate the boundary fluid dynamics to the effective action on the
stretched horizon. igbal, Liu

Breclberg) Keeler, Lgsov) Strominger

Nickel, Son
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Sunm mary

@ A general prescription for a Wilsonian approach to the holographic

renormalization group.
@ We explicitly integrate out regions of the bulk spacetime and use it to

induce an effective action on the cut-off surface.

@ At the level of classical gravity and for probe fields (scalars, vectors):
# Obtain the beta-function equations for multi-trace operators
# Make contact with the semi-holographic models.

@ Provide a clean derivation of diffusion on the stretched horizon a la the
black hole membrane paradigm.




Opem LSsues

@ What about dynamical gravity?

« would like to see an effective action for the hydrodynamic modes which
arise from integrating out the degrees of freedom between the boundary
and the horizon.

# construct effective actions for low energy modes in extremal black hole

backgrounds.

@ What is the role of alternative quantization?

@ seems to provide a simpler way to understand the process of integrating
out the geometry:

« retains the light degrees of freedom.

«# perhaps a useful tool to understand induced gravity?




